
Essential Delphi IDE 10.3 - 1

Essential Delphi

IDE 10.3

Sample content of a coming book introducing the Delphi IDE (and updated for Del-
phi 10.3). The material is based (with permission) on classic editions of Mastering
Delphi.

This ebook is copyright Marco Cantu 1995-2020. All rights reserved.

For more information refer to www.marcocantu.com

Marco Cantù, Essential Delphi IDE 10.3

http://www.marcocantu.com/

2 - 01: A Form Is a Window

01: A Form Is A

Window

The Delphi IDE is a very complex application, with many feature accumulated
over 25 years the product has been in existence. So the question where to start
covering it is more than legitimate. In this first chapter of the book I want to pro-
vide a practical introduction, in case you've never build an application with
Delphi. Starting from the next chapter I'll go deeper in coverage going over each
of the IDE areas in more and more detail.

Let's start our exploration of Delphi by looking to the simplest scenario, building
Windows applications using the VCL library. This is the easiest starting point, while
most concept will also apply to mobile and multi-device development.

Windows applications are usually based on windows. So, how are we going to create
our first window? We’ll do it by using a form. As the chapter title suggests, a form
really is a window in disguise. There is no real difference between the two concepts,
at least from a general point of view.

Marco Cantù, Essential Delphi IDE 10.3

01: A Form Is a Window - 3

note If you look closely, a form is always a window, but the reverse isn’t always true. Some Delphi com-
ponents are windows, too. A push button is a window. A list box is a window. To avoid confusion,
I’ll use the term form to indicate the main window of an application or a similar window and the
term window in the broader sense. In the mobile world these relationships are a bit more intricate
and platform-specific, but the broad concept still applies.

Creating Your First Form

Even though you have probably already created at least some simple applications in
Delphi, I’m going to show you the process again, to highlight some interesting
points. Creating a form for a Windows application is one of the easiest operations in
the system: You only need to create a new “Windows VCL Application” from the File
| New menu or the Welcome page and Delphi will add to it a new, empty form, as
you can see in the figure below. That’s all there is to it.

Believe it or not, you already have a working application. You can run it, using the
Run button on the toolbar or the Run | Run menu command or just pressing F9,
and it will result in a standard Windows program. Of course, this application won’t
be very useful, since it has a single empty window with no capabilities, but the
default behavior of any Windows window.

Marco Cantù, Essential Delphi IDE 10.3

4 - 01: A Form Is a Window

Adding a Title

Before we run the application, let’s make a quick change. The title of the form is
Form1. For a user, the title of the main window stands for the name of the applica-
tion. Let’s change Form1 to something more meaningful. When you first open
Delphi, the Object Inspector window should appear on the left side of the form (if it
doesn’t, open it by choosing View | Tools Windows | Object Inspector or pressing
the F11 key):

The Object Inspector shows the properties of the selected component. The window
contains a tab control with two pages. The first page is labeled Properties. The other
page is labeled Events and shows a list of events that can take place in the form or in
the selected component.

The properties are listed in alphabetical order, so it’s quite easy to find the ones you
want to change, but you can also type the name of the property in the search box to
get quickly to it:

Marco Cantù, Essential Delphi IDE 10.3

01: A Form Is a Window - 5

note It is also possible to group properties in the Object Inspector by category, but this feature is sel-
dom used by Delphi developers.

We can change the title of the form simply by changing the Caption property. While
you type a new caption, you can see the title of the form change. If you type Hello,
the title of the form changes immediately. As an alternative, you can modify the
internal name of the form by changing its Name property. If you have not entered a
new caption, the new value of the Name property will be used for the Caption prop-
erty, too.

tip Only a few of the properties of a component change while you type the new value. Most are
applied when you finish the editing operation and press the Enter key (or move the input focus to
a new property).

Although we haven’t done much work, we have built a full-blown application, with a
system menu and the default Minimize, Maximize, and Close buttons. You can re-
size the form by dragging its borders, move it by dragging its caption, maximize it to
full-screen size, or minimize it. It works, but again, it’s not very useful. If you look at
the menu in the Windows Taskbar, you’ll see that something isn’t right:

Instead of showing the caption of the form as the icon caption, it shows the name of
the project, something like Project1. We can fix this by giving a name to the
project, which we’ll do by saving it to disk with a new name.

Saving the Form

Select the Save Project or Save Project As command from the File menu (or the
matching toolbar button), and Delphi will first ask you to give a name to the source
code file, or unit, associated with the form, and then to name the project file. Since
the name of the project should match the caption of the form (Hello), I’ve named
the form source file HelloForm.pas. I’ve given the project file the name Hello.dpr.

Unfortunately, we cannot use the same name for the project and the unit that
defines the form; for each application, these items must have unique names. You
can add Form, just use Unit, or call every initial form unit MainForm, or choose any
other naming convention you like. I tend to use a name similar to the project name,

Marco Cantù, Essential Delphi IDE 10.3

6 - 01: A Form Is a Window

as simply calling it MainForm means you’ll end up with a number of forms (in dif-
ferent projects) that all have the same name.

The name you give to the project file is used by default at run-time as the title of the
application, displayed by Windows in the Taskbar while the program is running. For
this reason, if the name of the project matches the caption of the main form, it will
also correspond to the name on the Taskbar. You can also change the title of the
application by using the Application | Appearance page of the Project Options dialog
box (choose Project | Options):

As an alternative you can write a line of code to change the Title property of the
Application global object, but that's for a later time.

Using Components

Now it’s time to start placing something useful in our Hello form. Forms can be
thought of as component containers. Each form can host a number of components
or controls.

You can choose a component from the Palette toolbox (by default on the right of the
form designer, under the Project manager. If you choose the Button component
from the Standard page of the Palette, for example, you can do any of the following
four simple ways to place a component on a form:

• Click on the component, move the mouse cursor to the form, press the left
mouse button to set the upper-left corner of the button, and drag the mouse
to set the button’s size.

• Select the component as above, and then simply click on the form to place a
button of the default height and width.

Marco Cantù, Essential Delphi IDE 10.3

01: A Form Is a Window - 7

• Double-click on the icon in the Components Palette, and a component of
that type will be added in the center of the form.

• Shift-click on the component icon, and place several copies of the compo-
nent in the form using one of the above procedures. When you are done
click on the Arrow button in the Palette toolbar to disable the selection.

Our form will have only one button, so we’ll center it in the form. You can do this by
hand, with a little help from Delphi. When you choose View | Toolbars | Position, a
new section gets added to the Delphi IDE toolbar with positioning icons:

note The Positioning toolbar (which was originally mixed with Align toolbar) is a rarely used feature
these days. But I've decided to keep these steps and the example from the original Mastering Del-
phi book anyway.

This toolbox includes buttons to bring control in front of push the behind other con-
trols, and center them in the form. A separate Align toolbar helps aligning controls
one to the other. Using the last two buttons, you can place a component in the cen-
ter of the form.

Although we’ve placed the button in the center, as soon as you run the program, you
can resize the form and the button won’t be in the center anymore. So the button is
only in the center of the form at start up. Later on, we’ll see how to make the button
remain in the center after the form is resized, by adding some code. For now, our
first priority is to change the button’s label.

Changing Properties

Like the form, the button has a Caption property that we can use to change its label
(the text displayed inside it). As a better alternative, we can change the name of the
button. The name is a kind of internal property, used only in the code of the pro-
gram. However, as I mentioned earlier, if you change the name of a button before
changing its caption, the Caption property will have the same text as the Name prop-
erty. Changing the Name property is usually a good choice, and you should generally
do this early in the development cycle, before you write much code.

Marco Cantù, Essential Delphi IDE 10.3

8 - 01: A Form Is a Window

note It is quite common to define a naming convention for each type of component (usually the full
name or a shorter version, such as “btn” for Button). If you use a different prefix for each type of
component (as in “ButtonHello” or “BtnHello”), the combo box above the Object Inspector will
list the components of the same kind in a group, because they are alphabetically sorted. If you
instead use a suffix, naming the components “HelloButton” or “HelloBtn,” components of the
same kind will be in different positions on the list. In this second case, however, finding a particu-
lar component using the keyboard might be faster. In fact, when the Object Inspector is selected
you can type a letter to jump to the first component whose name starts with that letter.

Besides setting a proper name for a component, you often need to change its
Caption property. There are at least two reasons to have a caption different from the
name. The first is that the name often follows a naming convention (as described in
the note above) that you won’t want to use in a caption. The second reason is that
captions should be descriptive, and therefore they often use two or more words, as
in my Say hello button. If you try to use this text as the Name property, however, Del-
phi will show an error message:

The name is an internal property, and it is used as the name of a variable referring
to the component. Therefore, for the Name property, you must follow the rules for
naming an identifier in the Pascal language:

• An identifier is a sequence of letters, digits, or underscore characters of any
length.

• The first character of an identifier cannot be a number; it must be a letter or
the underscore character.

• No spaces are allowed in an identifier.

• Identifiers are not case-sensitive, but usually each word in an identifier
begins with a capital letter, as in BtnHello. But btnhello, btnHello, and
BTNHello refer to this same identifier.

 tip You can use the IsValidIdent system function in your applications to check whether a given
string is a valid identifier.

Marco Cantù, Essential Delphi IDE 10.3

01: A Form Is a Window - 9

While in the sections above we've gone over manual steps, there is a faster way to
set key properties of a component like its Name and Caption, and that is the use of
the Quick Edit feature. Select the component in the form designer, right click on it,
and pick the Quick Edit menu item. You'll see near the component a pane that
allows you to quickly edit those two properties and buttons to expand panels for
managing other common features:

Here is a summary of the changes we have made to the properties of the button and
form. At times, I’ll show you the structure of the form of the examples as it appears
once it has been converted in a readable format (I’ll describe how to convert a form
into text later in this chapter). I won’t show you the entire textual description of a
form (which is often quite long), but rather only its key elements. I won’t include the
lines describing the position of the components, their sizes, or some less important
default values. Here is the code:

object Form1: TForm1
 Caption = 'Hello'
 OnClick = FormClick
 object BtnHello: TButton
 Caption = 'Say hello'
 OnClick = BtnHelloClick
 end
end

This description shows some attributes of the components and the events they
respond to. We will see the code for these events in the following sections. If you run
this program now, you will see that the button works properly. In fact, if you click on
it, it will be pushed, and when you release the mouse button, the on-screen button
will be released. The only problem is that when you press the button, you might
expect something to happen; but nothing does, because we haven’t assigned any
action to the mouse-click yet.

Marco Cantù, Essential Delphi IDE 10.3

10 - 01: A Form Is a Window

Responding to Events

When you press the mouse button on a form or a component, Windows informs
your application of the event by sending it a message. Delphi responds by receiving
an event notification and calling the appropriate event-handler method. As a pro-
grammer, you can provide several of these methods, both for the form itself and for
the components you have placed in it. Delphi defines a number of events for each
kind of component. The list of events for a form is different from the list for a but-
ton, as you can easily see by clicking on these two components while the Events
page is selected in the Object Inspector. Some events are common to both compo-
nents.

There are several techniques you can use to define a handler for the OnClick event
of the button:

• Select the button, either in the form or by using the Object Inspector’s
combo box (called the Object Selector), select the Events page, and double-
click in the white area on the right side of the OnClick event. A new method
name will appear, BtnHelloClick.

• Select the button, select the Events page, and enter the name of a new
method in the white area on the right side of the OnClick event. Then press
the Enter key to accept it.

• Double-click on the button, and Delphi will perform the default action for
this component, which is to add a handler for the OnClick event. Other com-
ponents have completely different default actions.

With any of these approaches, Delphi creates a procedure named BtnHelloClick (or
the name you’ve provided) in the code of the form and opens the source code file in
that position:

Even if you are not sure of the effect of the default action of a component, you can
still double-click on it. If you end up adding a new procedure you don’t need, just
leave it empty. Empty method bodies generated by Delphi will be removed as soon
as you save the file. In other words, if you don’t put any code in them, they simply
go away.

Marco Cantù, Essential Delphi IDE 10.3

01: A Form Is a Window - 11

 note When you want to remove an event-response method you have written from the source code of a
Delphi application, you could delete all of the references to it. However, a better way is to delete all
of the code from the corresponding procedure, leaving only the declaration and the begin and end
keywords. The text should be the same as what Delphi automatically generated when you first
decided to handle the event. When you save or compile a project, Delphi removes any empty
methods from the source code and from the form description (including the reference to them in
the Events page of the Object Inspector). Conversely, to keep an event-handler that is still empty,
consider adding a comment to it, like //, so that it will not be removed.

Now we can start typing some instructions between the begin and end keywords
that delimit the code of the procedure. Writing code is usually so simple that you
don’t need to be an expert in the language to start working with Delphi. You can find
many tutorials online if you need help or check the bibliography in the appendix of
this book.

Of the code below, you should type only the line in the middle, but I’ve included the
whole source code of the procedure to let you know where you need to add the new
code in the editor:

procedure TForm1.BtnHelloClick(Sender: TObject);
begin
 MessageDlg ('Hello, guys', mtInformation, [mbOK], 0);
end;

The code is simple. There is only a call to a function, MessageDlg, to display a small
message dialog box. The function has four parameters. Notice that as you type the
open parenthesis, the Delphi editor will show you the list of parameters in a hint
window, making it simpler to remember them.

If you need more information about the parameters of this function and their mean-
ings, you can click on its name in the edit window and press F1. This brings up the
Help information. Since this is the first code we are writing, here is a summary of
that description (the rest of this book, however, generally does not duplicate the ref-
erence information available in Delphi’s Help system, concentrating instead on
examples that demonstrate the features of the language and environment):

• The first parameter of the MessageDlg function is the string you want to dis-
play: the message.

• The second parameter is the type of message box. You can choose
mtWarning, mtError, mtInformation, or mtConfirmation. For each type of

Marco Cantù, Essential Delphi IDE 10.3

12 - 01: A Form Is a Window

message, the corresponding caption is used and a proper icon is displayed at
the side of the text.

• The third parameter is a set of values indicating the buttons you want to use.
You can choose mbYes, mbNo, mbOK, mbCancel, or mbHelp. Since this is a set of
values, you can have more than one of these values. Always use the proper
set notation with square brackets ([and]) to denote the set, even if you
have only one value, as in the line of the code above.

• The fourth parameter is the help context, a number indicating which page of
the Help system should be invoked if the user presses F1. Simply write 0 if
the application has no help file, as in this case.

The function also has a return value, which I’ve just ignored, using it as if it were a
procedure. In any case, it’s important to know that the function returns an identifier
of the button that the user clicked to close the message box. This is useful only if the
message box has more than one button.

 note Programmers unfamiliar with the Pascal language might be confused by the distinction between a
function and a procedure. In Pascal and Delphi, there are two different keywords to define proce-
dures and functions. The only difference between the two is that functions have a return value,
while procedures are like “void functions” in C/C++ terms.

After you have written the line of code above, you should be able to run the pro-
gram. When you click on the button, you’ll see the message box shown below:

Every time the user clicks on the push button in the form, a message is displayed.
What if the mouse is pressed outside that area? Nothing happens. Of course, we can
add some new code to handle this event. We only need to add an OnClick event to
the form itself. To do this, move to the Events page of the Object Inspector and
select the form. Then double-click at the right side of the OnClick event, and you’ll

Marco Cantù, Essential Delphi IDE 10.3

01: A Form Is a Window - 13

end up in the proper position in the edit window. Now add a new call to the
MessageDlg function, as in the following code:

procedure TForm1.FormClick(Sender: TObject);
begin
 MessageDlg ('You have clicked outside of the button',
 mtWarning, [mbOK], 0);
end;

With this new version of the program, if the user clicks on the button, the hello mes-
sage is displayed, but if the user misses the button, a warning message appears.
Notice that I’ve written the code on two lines, instead of one. The Delphi compiler
completely ignores new lines, white spaces, tab spaces, and similar formatting char-
acters. Unlike other programming languages, program statements are separated by
semicolons (;), not by new lines.

There is one case in which Delphi doesn’t completely ignore line breaks: Strings
cannot extend across multiple lines. In some cases, you can split a very long string
into two different strings, written on two lines, and merge them by writing one after
the other.

Compiling and Running a Program

Before we make any further changes to our Hello program, let’s stop for a moment
to consider what happens when you run the application. When you click on the tool-
bar Run button or select Run | Run, Delphi does the following:

1: Compiles the Pascal source code file (.pas) describing the form

2: Compiles the project file (.dpr)

3: Builds the executable (EXE) file, linking the proper libraries

4: Runs the executable file, usually in debug mode

The executable file you obtained by default is a stand-alone executable program
with no dependency on library file or a run-time library (as it happens for many
other competing tools). Delphi allows you also to link the required libraries code
into the executable file, but you can also specify the use of separate run-time pack-
ages, making the executable file much smaller but introducing a run-time
dependency.

Marco Cantù, Essential Delphi IDE 10.3

14 - 01: A Form Is a Window

 note The fact that Delphi produces standalone executable files implies it does not require run-time
compilation of a source code file (like it happens for JavaScript or Python), it doesn't need compi-
lation of intermediate byte-code or IL representation (like C# or Java), and it doesn't even require
an execution environment like the .NET run-time or the Java virtual machine. Delphi executable
is just binary assembly of the given CPU and platform, desktop or mobile.

The key point is that when you ask Delphi to run your application, it compiles it into
an executable file. You can easily run this file from the Windows Explorer or using
the Run command on the Start button. Compiling this program as usual, linking all
the required library code, produces an executable of about a few hundred Kb (much
more with debug information). By using run-time packages, this can shrink the exe-
cutable to about 20 Kb. Simply select the Project | Options menu command, move
to the Packages page, and select the check box Build with run-time packages:

Packages are dynamic link libraries containing Delphi components (the Visual Com-
ponents Library, for example). By using packages you can make an executable file
much smaller. However, the program won’t run unless the proper dynamic link
libraries (such as vclxxx.bpl) are available on the computer where you want to run
the program. The BPL extensions stands for Borland Package Libraries; it is the
extension used by Delphi (and C++Builder) packages, which are technically DLL
files. Using this extension makes it easier to recognize them (and find them on a
hard disk).

 note The xxx in vclxxx.bpl stands for the specific version number, such as csl260.bpl for Delphi 10.3.x.
Each major version of Delphi is incompatible with libraries for previous versions, and has a new
set of run-time packages, with a different number.

If you add the size of this dynamic library to that of the small executable file, the
total amount of disk space required by the program built with run-time packages is
much bigger than the space required by the bigger stand-alone executable file. For
this reason the use of packages is not always recommended. The great advantage of

Marco Cantù, Essential Delphi IDE 10.3

01: A Form Is a Window - 15

Delphi over competing development tools is that you can easily choose whether to
use the stand-alone executable or the small executable with run-time packages.

In both cases, Delphi executable files are extremely fast to compile, and the speed of
the resulting application is comparable with that of a C or C++ program. Delphi
compiled code runs much faster than the equivalent code in interpreted or semi-
compiled tools (although improvements in JIT – Just-In-Time compilation – tech-
nology has reduce the gap) and very fast to start as there is no initial compilation
time to incur.

Some users cannot believe that Delphi generates real executable code, because
when you run a small program, its main window appears almost immediately, as
happens in some interpreted environments.

In the tradition of Borland’s Turbo Pascal compilers, the Object Pascal compiler
embedded in Delphi works very quickly. For a number of technical reasons, it is
much faster than any C++ compiler. One reason for the higher speed of the Delphi
compiler is that the language definition is simpler. Another is that the Pascal com-
pilers and linkers have less work to do to include libraries or other compiled source
files in a program, because of the structure of units (the compiled DCU file, more on
this later in the chapter).

 note To be honest the compilers based on the LLVM architecture (that is, most of the non-Windows
compilers) are not as fast compiling and significantly slower when linking, as they use more stan-
dard techniques of the LLVM architecture and are less optimized.

Changing Properties at Run-Time

Let’s return to the Hello application. We now want to change some properties at
run-time. For example, we might change the text of HelloButton from Say hello to
Say hello again after the first time a user clicks on it. You may also need to widen
the button, as the caption becomes longer. This is really simple. You only need to
change the code of the HelloButtonClick procedure as follows:

procedure TForm1.HelloButtonClick(Sender: TObject);
begin
 MessageDlg ('Hello, guys', mtInformation, [mbOK], 0);
 btnHello.Caption := 'Say Hello Again';
end;

Marco Cantù, Essential Delphi IDE 10.3

16 - 01: A Form Is a Window

 note If you are new to the language, notice that Pascal and Delphi use the := operator to express an
assignment and the = operator to test for equality. At the beginning, this can be confusing for pro-
grammers coming from other languages. For example in C and C++, the assignment operator is =,
and the equality test is ==. After a while, you’ll get used to it. In the meantime, if you happen to
use = instead of :=, you’ll get an error message from the compiler

A property such as Caption can be changed at run-time very easily, by using an
assignment statement. Most properties can be changed at run-time, and some can
be changed only at run-time. You can easily spot this last group: They are not listed
in the Object Inspector, but they appear in the Help file for the component (or in its
source code). Some of these run-time properties are defined as read-only, which
means that you can access their value but you cannot change it.

Adding Code to the Program

Our program is almost finished, but we still have a problem to solve, which will
require some real coding. The button starts in the center of the form, but will not
remain there when you resize the form. This problem can be solved in two radically
different ways.

One solution is to change the border of the form to a thin frame, so that the form
cannot be resized at run-time. Just move to the BorderStyle property of the form,
and choose bsSingle instead of bsSizeable from the combo box.

The other approach is to write some code to move the button to the center of the
form each time the form is resized, and that’s what we’ll do next. Although it might
seem that most of your work in programming with Delphi is just a matter of select-
ing options and visual elements, there comes a time when you need to write code, of
course. As you become more expert (and your applications become larger), the per-
centage of the time spent writing code will generally increase significantly.

When you want to add some code to a program, the first question you need to ask
yourself is where? In an event-driven environment, the code is always executed in
response to an event. When a form is resized, an event takes place: OnResize. Select
the form in the Object Inspector and double-click next to OnResize in the Events
page. A new procedure (a method, to be precise) is added to the source file of the
form. Now you need to type some code in the editor, as follows:

procedure TForm1.FormResize(Sender: TObject);
begin
 BtnHello.Top := Form1.ClientHeight div 2 -

Marco Cantù, Essential Delphi IDE 10.3

01: A Form Is a Window - 17

 BtnHello.Height div 2;
 BtnHello.Left := Form1.ClientWidth div 2 -
 BtnHello.Width div 2;
end;

To set the Top and Left properties of the button — that is, the position of its upper-
left corner — the program computes the center of the form, dividing the height and
the width of the internal area or client area of the form by 2, and then subtracts half
the height or width of the button. Note also that if you use the Height and Width
properties of the form, instead of the ClientWidth and ClientHeight properties,
you will refer to the center of the whole window, including the caption at the top
border. This final version of the example works quite well as you can see below:

This figure includes two versions of the form, with different sizes. By the way, this
figure is a real snapshot of the screen. Once you have created a Windows applica-
tion, you can run several copies of it at the same time by using the Explorer or using
Run Without Debugging from the Delphi IDE. By contrast, the Delphi environment
can start only one copy of a program in debugging. When you use the Run button to
start a program within Delphi, you execute it in the integrated debugger, and the
IDE cannot debug two programs at the same time.

 note You could possibly start two copies of the Delphi IDE and let each debug a different application,
but this is a more advanced use case than I'm planning to cover in this book.

Marco Cantù, Essential Delphi IDE 10.3

18 - 01: A Form Is a Window

A Two-Way Tool

In the Hello example, we have written three small portions of code, to respond to
three different events. Each portion of code was part of a different procedure (actu-
ally a method). But where does the code we write end up? The source code of a form
is written in a single Pascal language source file, the one we’ve named
HelloForm.pas. This file evolves and grows not only when you code the response of
some events, but also as you add components to the form. The properties of these
components are stored together with the properties of the form in a second file,
named HelloForm.dfm.

Delphi can be defined as a two-way tool, since everything you do in the visual envi-
ronment ends up in some code. Nothing is hidden away and inaccessible. You have
the complete code, and although some of it might be fairly complex, you can edit
everything. Of course, it is easier to use only the visual tools, at least until you are an
expert Delphi programmer.

The term two-way tool also means that you are free to change the code that has been
produced, and then go back to the visual tools. This is true as long as you follow
some simple rules.

Looking at the Source Code

Let’s take a look at what Delphi has generated from our operations so far. Every
action has an effect — in the Pascal code, in the code of the form, or in both. When
you start a new, blank project, the empty form has some code associated with it, as
in the following listing.

unit Unit1;

interface

uses
 Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants,
 System.Classes, Vcl.Graphics, Vcl.Controls, Vcl.Forms, Vcl.Dialogs;

type
 TForm1 = class(TForm)
 private
 { Private declarations }
 public
 { Public declarations }
 end;

Marco Cantù, Essential Delphi IDE 10.3

01: A Form Is a Window - 19

var
 Form1: TForm1;

implementation

{$R *.dfm}

end.

The file, named Unit1, uses a number of units and defines a new data type (a class)
and a new variable (an object of that class). The class is named TForm1, and it is
derived from TForm. The object is Form1, of the new type TForm1.

Units are the modules into which a Pascal program is divided. When you start a new
project, Delphi generates a program module and a unit that defines the main form.
Each time you add a form to a Delphi program, you add a new unit. Units are then
compiled separately and linked into the main program. By default, unit files have a
.pas extension and program files have a .dpr extension.

If you rename the files as suggested in the example, the code changes slightly, since
the name of the unit must reflect the name of the file. If you name the file
HelloForm.pas, the code begins with

unit HelloForm;

As soon as you start adding new components, the form class declaration in the
source code changes. For example, when you add a button to the form, the portion
of the source code defining the new data type becomes the following:

type
 TForm1 = class(TForm)
 Button1: TButton;
 ...

Now if you change the button’s Name property (using the Object Inspector) to
BtnHello, the code changes slightly again:

type
 TForm1 = class(TForm)
 BtnHello: TButton;
 ...

Setting properties other than the name has no effect in the source code. The proper-
ties of the form and its components are stored in a separate form description file
(with a .dfm extension).

 note FireMonkey multi-device applications use a very similar structure, only the textual definition of
resources is saved in a file with the .fmx extension

Marco Cantù, Essential Delphi IDE 10.3

20 - 01: A Form Is a Window

Adding new event handlers has the biggest impact on the code. Each time you
define a new handler for an event, a line is added to the data type definition of the
form, an empty method body is added in the implementation part, and some infor-
mation is stored in the form description file, too.

It is worth noting that there is a single file for the whole code of a form, not just
small fragments for each of the event handlers. This is the complete code of the unit
(something I'd generally avoid to list in the book, as it repeats a lot of boilerplate
code):

unit HelloForm;

interface

uses
 Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants,
 System.Classes, Vcl.Graphics, Vcl.Controls, Vcl.Forms, Vcl.Dialogs,
 Vcl.StdCtrls;

type
 TForm1 = class(TForm)
 BtnHello: TButton;
 procedure BtnHelloClick(Sender: TObject);
 procedure FormClick(Sender: TObject);
 procedure FormResize(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.dfm}

uses
 System.UITypes;

procedure TForm1.BtnHelloClick(Sender: TObject);
begin
 MessageDlg ('Hello, guys', mtInformation, [mbOK], 0);
 BtnHello.Caption := 'Say Hello Again';
end;

procedure TForm1.FormClick(Sender: TObject);
begin
 MessageDlg ('You have clicked outside of the button',
 mtWarning, [mbOK], 0);
end;

Marco Cantù, Essential Delphi IDE 10.3

01: A Form Is a Window - 21

procedure TForm1.FormResize(Sender: TObject);
begin
 BtnHello.Top := Form1.ClientHeight div 2 -
 BtnHello.Height div 2;
 BtnHello.Left := Form1.ClientWidth div 2 -
 BtnHello.Width div 2;
end;

end.

Of course, the code is only a partial description of the form. The source code deter-
mines how the form and its components react to events. The form description (the
DFM file) stores the values of the properties of the form and of its components. In
general, source code defines the actions of the system, and form files define the ini-
tial state of the system.

The Textual Description of the Form

As I’ve just mentioned, along with the PAS file containing the source code, there is
another file describing the form, its properties, its components, and the properties
of the components. This is the DFM file, a text file with the definition of the configu-
ration you create at design time with the form designer and Object Inspector.

note In the early versions of Delphi the DFM file was a binary file. Now this is by default a text file con-
verted to a binary resource during the compilation process. The binary version is what gets into
the executable, because it is a more compact representation and a faster to process one. Whatever
the format, if you load this file in the Delphi code editor, it will be converted into a textual descrip-
tion.
In any case, you can determine if the DFM is text or binary for a new module by opening the IDE
Tools | Options menu and selecting User Interface | Form Designer going over the Module cre-
ation options and using the check box New forms as text.

You can open the textual description of a form simply by selecting the shortcut
menu of the form designer (that is, right-clicking on the surface of the form at
design-time) and selecting the View as Text command. This closes the form, saving
it if necessary, and opens the DFM file in the editor. You can later go back to the form
using the View as Form command of the local menu of the editor window. The alter-
native is to open the DFM file directly in the Delphi editor.

To understand what is stored in the DFM file, you can look at the next listing, which
shows the textual description of the form of the first version of the Hello example.
This is exactly the code you’ll see if you give the View as Text command in the local

Marco Cantù, Essential Delphi IDE 10.3

22 - 01: A Form Is a Window

menu of the form (again, in the book I'll generally include snippets of DFM files, but
rarely a complete listing):

object Form1: TForm1
 Left = 0
 Top = 0
 Caption = 'Hello'
 ClientHeight = 299
 ClientWidth = 635
 Color = clBtnFace
 Font.Charset = DEFAULT_CHARSET
 Font.Color = clWindowText
 Font.Height = -11
 Font.Name = 'Tahoma'
 Font.Style = []
 OldCreateOrder = False
 OnClick = FormClick
 OnResize = FormResize
 PixelsPerInch = 96
 TextHeight = 13
 object BtnHello: TButton
 Left = 261
 Top = 137
 Width = 113
 Height = 25
 Caption = 'Say Hello'
 TabOrder = 0
 OnClick = BtnHelloClick
 end
end

You can compare this code with what I used before to indicate the key features and
properties of the form and its components. As you can see in this listing, the textual
description of a form contains a number of objects (in this case, two) at different
levels. The Form1 object contains the BtnHello object, as you can immediately see
from the indentation of the text. Each object has a number of properties, and some
methods connected to events (in this case, OnClick).

 note Once you’ve opened this file in Delphi, you can edit the textual description of the form, although
this should be done with extreme care. As soon as you save the file, it will be turned back into a
binary file. If you’ve made incorrect changes, this compilation will stop with an error message, and
you’ll need to correct the contents of your DFM file before you can reopen the form in the editor.
For this reason, you shouldn’t try to change the textual description of a form manually until you
have a good knowledge of Delphi programming.

An expert programmer might choose to work on the text of a form for a number of
reasons. For big projects, the textual description of the form is a powerful docu-
menting tool, an important form of backup (in case someone plays with the form,
you can understand what has gone wrong by comparing the two textual versions),

Marco Cantù, Essential Delphi IDE 10.3

01: A Form Is a Window - 23

and a good target for a version control tool. For these reasons, Delphi also provides
a DOS command-line tool, CONVERT.EXE, which can translate forms from the com-
piled version to the textual description and vice verse. As we will see in the next
chapter, the conversion is also applied when you cut or copy components from a
form to the Clipboard.

The Project File

In addition to the two files describing the form (PAS and DFM), a third file is vital for
rebuilding the application. This is the Delphi project file (DPR). This file is built auto-
matically, and you seldom need to change it, particularly for small programs. If you
do need to change the behavior of a project, there are basically two ways to do so:

• You can use the Delphi Project Manager and set some project options

• You can manually edit the project file directly

This project file is really a Pascal language source file, describing the overall struc-
ture of the program and its start-up code:

program Hello;

uses
 Vcl.Forms,
 HelloForm in 'HelloForm.pas' {Form1};

{$R *.res}

begin
 Application.Initialize;
 Application.MainFormOnTaskbar := True;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

You can see this file with the Project | View Source menu command (historically it
was View | Project Source). As an alternative, you can select the project node in the
Project manager and use the View Source option of the local menu.

What’s Next

In this chapter, we created a simple program, added a button to it, and handled
some basic events, such as a click with the mouse or a resize operation. We also saw

Marco Cantù, Essential Delphi IDE 10.3

24 - 01: A Form Is a Window

how to name files, projects, forms, and components, and how this affects the source
code of the program. We looked at the source code of the simple programs we’ve
built, although some of you might not be fluent enough in Object Pascal to under-
stand the details.

In the next chapter we'll start exploring the Delphi IDE is a more systematic way,
going over the various features it has. After an overview chapter, the following ones
will delve into very specific areas, like the form designer, the editor, and the debug-
ger.

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 25

02: Highlights Of

The Delphi IDE

In a visual programming tool such as Delphi, the role of the environment is cer-
tainly important, and the various tools help you get work done faster. After the
introduction in the last chapter, this second part offers a deeper overview of the IDE
and its features. Now in some cases the topics just introduce deeper coverage in fol-
lowing chapters, while in others there isn't much more to say.

This chapter won’t discuss all of the features of Delphi, but it will give you the over-
all picture and help you to explore some of the environment traits that are not
obvious, while suggesting some tips that may help you. You’ll find more information
about specific commands and operations throughout the book.

Marco Cantù, Essential Delphi IDE 10.3

26 - 02: Highlights of the Delphi IDE

Delphi IDE Foundations

There is a lot to write about the Delphi IDE and I want to start offering a little his-
tory and covering the different versions, the different personalities and the start-up
command line parameters you can use.

Different Versions of Delphi

Before delving into the details of the Delphi programming environment, let’s take a
side step to underline two key ideas. First, there isn’t a single version of Delphi;
there are two of them, with some variations:

• The Professional edition is aimed at professional developers building stand-
alone applications or simple database ones (the FireDAC data access library
is included, with limited client/server support). The Professional package
has limitations in multi-tier development, but offers the full set of controls
for UI development on desktop and mobile.

• The Community Edition (CE) has the same features of the Professional edi-
tion, from a technical point of view, but comes with a limited license:

◦ You can use it only if you or your company makes less than 5,000
USD/year in revenues (covering students, hobbyist, retired people,
start-ups, and more)

◦ You can only install a maximum of 5 copies on your local network
(notice that educational institution looking to install many copies on a
lab can use the Academic versions, which are free or have a nominal fee)

• The Enterprise edition is aimed at developers building client/server and
multi-tier applications. It includes all FireDAC drivers for most Enterprise
level relational databases, DataSnap and RAD Server multi-tier architec-
tures, and support for the Linux target.

Besides the different editions available, there are a number of ways to customize the
Delphi environment. You can change the buttons of the toolbar, attach new com-
mands to the Tools menu, hide some of the windows or elements, and resize and
move all of them. You can also install a large number of different IDE add-ins, a few
of which are made available directly by Embarcadero and I'll mention in the book.

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 27

A Short History of the Delphi IDE

The original Delphi IDE, that worked under Windows 3.1, provided the groundwork
for all following versions right up to Delphi 7. Around that time, Borland decided to
redesign the IDE to open it up to multiple programming languages (or personalities,
as they were later called), with the goal to support Microsoft .NET development (a
feature later abandoned), and to integrate several Application Lifetime Manage-
ment (ALM) tools they had bought and were focusing on at the time.

The so-called “Galileo IDE” project is the foundation of all recent Delphi IDEs, from
Delphi 8 up to the current Delphi 10 series. This IDE also went over different nam-
ing changes, partially reflected in some of the folders along with company names
changes.

In terms of company, Borland formed a division called CodeGear and put in on sale.
A company called Embarcadero acquired it, only to be alter bought by Idera, Inc.
Idera has a large number of products, and Delphi is part of the Developers Tools
division which includes Embarcadero along with other development tools. Each tool
retains its originally brand and web site, like for Delphi www.embarcadero.com, while
overall company information can be found at www.ideracorp.com.

In terms of the product name, Delphi has always been called Delphi, with C+
+Builder being its sibling product since the early days. Since debut of the “Galileo
IDE”, it has been possible to combine the two – and additional products – into a
single application, which is also sold as a combined product. For Delphi 2005 and
Delphi 2006 the IDE was called Borland Developer Studio (hence the BDS name,
which remains the name of the IDE application, bds.exe), while from the 2007 ver-
sion and until today is has been called RAD Studio.

A Matter of “Personality” (-p flag)

As mentioned since the introduction of the “Galileo” IDE, RAD Studio encompasses
multiple personalities. If you have a Delphi or C++Builder license, you can install
only the matching personality, while if you own a RAD Studio license you can decide
to install both. The installer lets you decide which personality and also which target
platforms to install, and you can combine than with some flexibility – but not com-
pletely at will.

note The RAD Studio product over time included additional personalities beside Delphi and C++,
including C#. In other cases additional languages (like PHP and HTML) were supported but not
bundles in the IDE – they required installing a separate development environment.

Marco Cantù, Essential Delphi IDE 10.3

28 - 02: Highlights of the Delphi IDE

If you own a RAD Studio license and have installed multiple personalities (that is,
both Delphi and C++ compilers for at least some platforms) you can still decide to
run the IDE by activating a single personality by using the -p flag followed by the
name of the personality you want to use, like for example for my installation:

"C:\Program Files (x86)\Embarcadero\Studio\20.0\bin\bds.exe" "-pDelphi"

If you create a shortcut with this parameter, you can easily start the specific person-
ality using it. Actually the RAD Studio installer already provides similar links in the
Embarcadero RAD Studio folder of the Windows Start Menu:

Installation Folders

Original Delphi versions were installed under the Program Files\Borland folder.
With changes in the product ownership, product name, and the need to support
Windows folder permissions, the overall structure has changed considerably.

The main installation folder for 10.3, using the defaults on an English language ver-
sion of Windows, is:

C:\Program Files (x86)\Embarcadero\Studio\20.0

Under this main folder there are many others. The most notable are :

• bin for all Win32 binaries, including the IDE, compilers, run-time packages
and many utilities

• other binXyz folders include binaries in other formats, like Win64, Linux
and macOS

• lib includes compiled library files (mostly in dcu format, but not only)

• source has extensive run-time libraries source code

Other files are installed outside of the Program Files section of the disk, because
they are meant to be created or modified by the user. These additional folders are
under the Users section of the disk and some of them can be under the individual
user or the Public user depending on installation options. On an English language
version of Windows, and using the defaults, the new projects folder, the examples
folder, the catalog repository, the FireDAC database configuration are respectively:

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 29

C:\Users\marco\Documents\Embarcadero\Studio\Projects
C:\Users\Public\Documents\Embarcadero\Studio\20.0\Samples
C:\Users\marco\Documents\Embarcadero\Studio\20.0\CatalogRepository
C:\Users\Public\Documents\Embarcadero\Studio\FireDAC

Registry Settings and Using Alternative
Configurations (-r flag)

Beside the Additional configuration information RAD Studio save a considerable
amount of data in the registry. The default data for the registry is saved under
HKEY_LOCAL_MACHINE (notice the WOW6432Node):

HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Embarcadero\BDS\20.0

The first time the IDE is started, the configuration is copied under:

HKEY_CURRENT_USER\Software\Embarcadero\BDS\20.0

This is where your configuration is kept with you change IDE options, install pack-
ages, and the like. If you know what you are doing, you can tweak some of these
settings in the registry directly.

You can also create a new snapshot of the configuration settings, by starting the IDE
with the -r flag. This can be handy as you can keep different configurations active at
the same time, for example with different IDE setting and also different third party
packages.

You can also create a stripped down version of Delphi (for faster start-up and
reduced memory consumption) whilst keeping the full version ready to use as
needed.

Technically, the Delphi -r command line parameter specifies the base registry key
to use. For example, create a shortcut like this:

"C:\Program Files (x86)\Embarcadero\Studio\20.0\bin\bds.exe" -rSmall

The first time you run it, Delphi creates a brand new set of registry keys, copying the
default settings (not the current ones) into:

HKEY_CURRENT_USER\Software\Embarcadero\Small\20.0

In other words, the name you provide replaces the BDS name in the registry tree.

 tip If you want to export the registry keys for the current configuration, or an additional one, and
merge it with another configuration or move it to a different computer, you can leverage the Set-
tings Migration Tool included with Delphi (migrationtool.exe in RAD Studio bin folder).

Marco Cantù, Essential Delphi IDE 10.3

30 - 02: Highlights of the Delphi IDE

In addition to the -r parameter and the -p parameter, there are other command line
parameters you can use when starting Delphi IDE, including:

-ns (no splash): disables the display of the splash screen

-np (no page): disables the Welcome page

-b (build): opens and builds the project passed as parameter

Delphi IDE Overview

Now that we have the basics of the configuration, folders, and start-up options, let's
have a first look of the Delphi IDE overall, highlighting some global features. The
first time you start the IDE, it asks you if you want use the light or dark mode:

This is a configuration you can easily change later, so don't worry about your initial
selection. I'll start right away covering the style configurations and the desktop con-
figurations, and how you can change them.

As the Delphi IDE starts it has many area, but the most notable section to start with
are those at the top:

• The special toolbar commands hosted in the title bar

• The menu bar

• The customizable toolbar

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 31

A Light or Dark IDE

The Delphi IDE offers two distinct configurations, Light Theme and Dark Theme.
You can pick one in the initial configuration, as in the image in the previous section,
and change the active theme any time.

 note Both because this is my preference and because very dark images are more complex to print with
good quality, I'm going to stick with using the Light Theme for most images in this book.

The easier way to change the theme is to use the corresponding icon with the moon
in the menu bar:

As you can see in this menu you can immediately pick the light or dark configura-
tion, select a matching set of editor colors with the Editor submenu or use Theme
Options to open the Theme Manager page of IDE Options dialog, where you can
configure the editor and Object Inspector color configuration associated with the
Light and Dark themes.

Marco Cantù, Essential Delphi IDE 10.3

32 - 02: Highlights of the Delphi IDE

The other two items in this menu (Save Desktop and Set Desktop) can be used along
with the desktop selection combo box also in the title bar to activate and configure
desktop settings, covered in the next section.

Desktop Settings

Programmers can customize the Delphi IDE in various ways—typically, opening
many windows, arranging them, and docking them to each other. However, you’ll
often need to open one set of windows at design time and a different set at debug
time. Similarly, you might need one layout when working with forms and a com-
pletely different layout when writing components or low-level code using only the
editor. Rearranging the IDE for each of these needs is a tedious task.

For this reason, Delphi lets you save a given arrangement of IDE windows (called a
desktop setting) with a name and restore it easily. For each IDE status you save
multiple desktop settings and pick a default one:

• The Startup Desktop is selected when the Delphi IDE starts and when no
project is active (for example, after you select the File | Close All menu). The
default option for this desktop configuration is called Startup Layout.

• The Default Desktop is selected when a project is active in the IDE and you
are editing or using the form designers. The default option for this desktop
configuration is called Default Layout.

• The Debug Desktop is selected when you start an application and debug it.
The default option for this desktop configuration is called Debug Layout.

You can modify any of these configuration and override these layouts or add new
ones with new names and define the default one for each IDE status.

Desktop settings are saved in files with the DST extension, which are INI files in dis-
guise. These files are saved in a folder with the version number under
C:\Users\<username>\AppData\Roaming\Embarcadero\BDS\.

The saved settings include the information about the main window, the Project
Manager, the Object Inspector, the editor windows (with the status of the Code
Explorer and the Message View), and many others, plus the docking status of the
various windows.

Here are some excerpts from a DST file, which should be easily readable:

[Main Window]
PercentageSizes=1
Create=1
Visible=1

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 33

Docked=0
State=0
...

[ProjectManager]
PercentageSizes=1
Create=1
Visible=1
Docked=1
StayOnTop=0

[MessageView]
PercentageSizes=1
Create=1
Visible=0
Docked=1
StayOnTop=0

[ToolForm]
PercentageSizes=1
Create=1
Visible=1
Docked=1
StayOnTop=0

[PropertyInspector]
PercentageSizes=1
Create=1
Visible=1
Docked=1
StayOnTop=0
SplitPos=111

The Welcome Page

As you run the IDE, your starting point will be the Welcome page. The Welcome
page is a pane hosting Internet Explorer and allowing you to view some pertinent
information. The Welcome page has common operations and a list of recent projects
you have worked with (empty below), alongside with some direct links to some
Sample Applications.

On the side there are panels with lists of coming events and YouTube videos from
the EmbarcaderoTechNet channel.

Marco Cantù, Essential Delphi IDE 10.3

34 - 02: Highlights of the Delphi IDE

 tip If you want to customize the Welcome page, you can modify some of its configuration files avail-
able in the WelcomePage folder under the main RAD Studio installation folder. There you can find
the core HTML and CSS files, along with the images displayed, plus JavaScript code and more.

The IDE Overall Structure

Going back to the structure of the Delphi IDE, notice that on the left and right side
of the main pane (with the Welcome page, the editor and the form designer) there
are several other windows hosting various panes.

By default (and this is something you can fully customize) there are the following
main panes available:

• The Structure View (on the left, above) hosts a tree view with the compo-
nents and controls on the current designer or the structure of the code in the
open unit, depending on which of the two is active

• The Object Inspector (on the left, below) shows details of the currently
selected component in the designer and can be used to modify the compo-
nents. It also shows some information about elements in the project
manager.

• A tabbed windows (on the right, above) hosts multiple views:

◦ The Project Manager with a tree view structure with the current project
(or multiple projects if a project group is active)

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 35

◦ The Model View shows UML modeling information when the feature is
active for a project – something that was more popular time ago and
now fairly neglected and seldom used

◦ The Data Explorer shows information about the predefined database
connections and let's you explore, query and modify databases

◦ The Multi-Device Preview helps configuring the mobile and desktop
previews for FireMonkey applications

• The Tool Palette (on the right, below) hosts the palette of available compo-
nents when a designer is active, and lists the entries in the New Items dialog
in other cases.

Another window at the bottom of the IDE generally hosts compiler results, search
results, and a refactoring previews, but also breakpoints lists, event view and other
debug panes. This window is displayed when necessary. There are also dozens of
other windows used by the IDE, including a number of debugger views. I'll cover
these various windows and panes when discussing related topics in this and the
coming chapters.

IDE Insight

Both newcomers and expert users can easily get lost in the large number of menu
items, settings, components, and features you can activate in the IDE. At times even
experts get lost because features were moved from a version of Delphi they spent a
lot of time with. That's why it is great to have searching capabilities in several dialog
boxes and an overall search mechanism for the entire IDE, called “IDE Insight”. The
IDE Insight search box is visible in the title bar, between layouts management and
the Help button:

Beside clicking it with the mouse, you activate typing in this box by pressing the F6
key (or by using Ctrl + <period>). As you start typing, a pull down will show a fil-
tered list of just about anything you might want to look for in the IDE:

As you can see above, the results are filtered by category and they can encompass
many different areas of the development environment – some of which depend on
the current selection (editor, form designer, start-up layout):

Marco Cantù, Essential Delphi IDE 10.3

36 - 02: Highlights of the Delphi IDE

 Commands of the main menu of the IDE, including those added
dynamically in the Tools menu or by Wizards or extensions of any kind
(but the menu items of local popup menus)

 Component Palette elements, where the current view is a visual
designer, like a form or a data module.

 Components used by the current designer, again where the current
view is a visual designer. Components depend on the installed packages,
and obviously include third-party ones.

 Code Templates, where the current view is an Object Pascal source
code editor, a C++Builder editor, or any other editor supporting code
templates.

 Desktop Setting, usually managed with the corresponding toolbar of
the main form, the one with the small combo box.

 Files include the list of files of the current project (and other projects in
the group) and is available only if a project is active in the Project Man-
ager.

 Forms filters the forms and designers of the current project, again only
if a project is active.

 New Items has elements of the New Items dialog box.
 Open Files provides fast access to any file currently open in the editor.

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 37

 Preferences filters on the individual elements of the IDE preferences
(the Tools | Options dialog box) and will open the corresponding page of
the dialog box when selected.

 Project Options does the same with the options of the current project
(again, you need to have a project open). Finding project options by typ-
ing their names is a superb feature I'm using a lot.

 Projects let's you jump to a project of the current project group.
 Recent Files and Recent Projects filter the recently closed source

code files and projects (which in Delphi 2010 can be customized much
more than in the past, as we'll see in the section “Many More Recent
Files”).

What is less intuitive to figure out is that you can use wild cards when typing in this
search box (and most other search boxes available in the IDE):

 ? will match any single character
 * will match zero, one, or more characters

Notice that an implicit * is automatically added both at the beginning and at the end
of the search text to match sub strings. The same wild cards work in most of the
other filtered search dialog boxes added to the IDE.

Asking for Help

The next element of the environment I want to mention is the Help system. There
are basically two ways to invoke the Help system: select the proper command in the
Help pull-down menu, or choose an element of the Delphi interface or a token in the
source code and press F1.

When you press F1, Delphi doesn’t search for an exact match in the Help Search list.
Instead, it tries to understand what you are asking. For example, if you press F1
when the text cursor is on the name of the Button1 component in the source code,
the Delphi Help system automatically opens the description of the TButton class,
since this is what you are probably looking for. This technique also works when you
give the component a new name. Try naming the button Foo, then move the cursor
to this word, press F1, and you’ll still get the help for the TButton class. This means
Delphi looks at the contextual meaning of the word for which you are asking help.

You can find almost everything in the Help system, but you need to know what to
search for. Usually this is obvious, but at times it is not. Spending some time just

Marco Cantù, Essential Delphi IDE 10.3

38 - 02: Highlights of the Delphi IDE

playing with the Help system will probably help you understand the structure of
these files and learn how to find the information you need.

The Help files provide a lot of information, both for beginner and expert program-
mers, and they are especially valuable as a reference tool. They list all of the
methods and properties for each component, the parameters of each method or
function, and similar details, which are particularly important while you are writing
code.

As an alternative you can refer to the online product documentation, powered by a
Wiki engine, at

http://docwiki.embarcadero.com/RADStudio/en/Main_Page

 tip The online version of the documentation on DocWiki gets updated more frequently than the ver-
sion installed in the product.

Delphi Menus and Commands

There are basically three ways to issue a command in the Delphi environment:

• Use the main menu

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 39

• Use the (customizable) toolbar

• Use one of the local menus activated by pressing the right mouse button in
the various panes

• Use IDE Insight as explained in the section “IDE Insight” earlier in this
chapter

The Delphi menus offer many commands and the IDE is very rich of features. While
it might look to be boring, in this section I'll go over each sub-menu of the main
menu and the various items as this gives me a very good way to offer an overview of
the features of the IDE. In the following sections, I’ll present some suggestions on
the use of some of the menu commands. In same cases I'll just mention a feature
which is detailed in a later chapter and refer to the deeper coverage elsewhere.

The File Menu

Our starting point is the File pull-down menu. The structure of this menu has kept
changing from version to version of Delphi, with menu items for handling specific
types of projects added and removed over time. Still, this menu contains commands
that operate on projects and commands that operate on source code files and offers
options for opening files, creating new ones, saving and closing.

Marco Cantù, Essential Delphi IDE 10.3

40 - 02: Highlights of the Delphi IDE

The File | New Sub-Menu

The File | New sub-menu offers different options for common operations and the
ability to open the File | New | Other dialog, also known as Object Repository. The
basic options are those that tend to change over time. Currently (in Delphi 10.3) the
menu offers by default the ability to create the following new items:

• Windows VCL Application creates a standard, empty project for the Win-
dows platform only, based on the classic VCL library

• Multi-Device Application creates a FireMonkey application for desktop and
mobile platforms. You can select one of a few predefined structures (with
headers, footers, tabs, and more) or start with an empty form, or Blank
Application.

• Package creates a components package or a package hosting IDE extensions
or other features. Packages are a slightly more advanced topics than we can
really cover in this book.

• Console Application creates a text-based console app you can use for differ-
ent operating systems (including Linux, if you have the Enterprise version).
A console app can just use direct interaction with the use via standard text
input and output, and is often used for writing test or small utilities. A con-
sole application starts with basic, skeleton code.

• VCL Form, Multi-Device Form, and Unit create a new standard alone Pascal
source code file or add a new one to the current project (if one is active). If a
project is open, however, only the compatible elements are visible (that is, if
you are working on a VCL project you won't see Multi-Device Form menu
item). In each case the new Pascal source code file (unit) will have a stan-
dard basic structure for forms or will be empty if you pick a plan unit.

• Other opens the File | New | Other dialog, or Object Repository.

• Customize allows you to change the entries of the File | New menu adding
new entries you use often or removing the current ones. The dialog to cus-
tomize the File | New menu looks like the following (but actual content
depends on your edition of RAD Studio or Delphi:

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 41

The File | Open Commands

Let's now get back to the main File menu. There are 4 open commands:

• Open can be used to open any file, including units, projects, project groups,
but also plan text files, INI files, configuration files, HTML files or any other
file a text editor can handle. Opening a new file generally doesn't affect the
current open project or open files. Notice that there are different commands
for adding an existing unit to the current project.

• Open From Version Control allows you to open a project from a remote
repository in a Version Control System like Subversion, Git or Mercurial.

• Open Project can be used to open an exiting project, replacing the currently
open project if any. Again, there is an alternative option which is add a new
project to the existing project group, keeping both (or many) projects open
ant the same time.

• Reopen allows you to open a recently closed project or file. When you select
File | Reopen you see a list of recently closed files and projects. You can also
customize how many of these files are kept in each group and do some
cleanup in the list by using the File | Reopen | Properties menu, which leads
to the following dialog box:

Marco Cantù, Essential Delphi IDE 10.3

42 - 02: Highlights of the Delphi IDE

The Other File Menu Commands

Saving files and projects is quite straightforward, with the menu commands Save,
Save As, Save Project As, Save All. Notice that if you save a project, Delphi will
prompt you to save the existing units first, and give a name to any newly created
one.

The Close and Close All commands are self-explicative. Notice, however, the local
menu of editor tabs offers additional closing operations, like closing all files save for
the current one or all those to the left and right (considering that position generally
depends on the opening sequence).

The following File menu command, Use Unit, offers the ability to add a reference
from the current unit to another unit in the project (with a uses statement). The
interesting point here is that this operation will let you add references to compo-
nents in the other unit at design time in the IDE, for example connecting a visual
component to a data source in another unit, like a Data Module.

Another peculiar command is Print. If you are editing source code and select this
command, the printer will output the text with syntax highlighting as an option:

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 43

If you are working on a form and select Print from the File menu, however, the
printer will produce the graphical representation of the form, offering these options:

Finally, there is the Exit menu item, which prompts you for saving any open file or
project ans shuts down the IDE.

 tip It is worth noting that it is not fully recommended to keep a very complex software like Delphi
running for many days in a row. Shutting it down from time to time cleaning up all memory and
resources is a good recommendation.

The Edit Menu

The Edit menu has some typical operations, such as Undo and Redo, and the Cut,
Copy, and Paste commands. The menu adapts to the context somehow (startup, edi-
tor, designer, etc). For example, when you work with the editor, the first command
of this pull-down menu is Undo; when you work with the form, it becomes Undelete
instead.

 note Undo in the form designer is not enabled because a large number of component properties cause
side effects that cannot really be reverted. Consider the active property of a database query, which
opens a connection, loads meta data, populate field definitions, creates fields and fetches some
records… how do you undo it? Compared to other IDEs where properties only set individual
fields, the fact Delphi frameworks are more rich and offer live data at design time is the reason a
general Undo operation is extremely complex to define. As a partial solution, there is an editor his-
tory that keeps multiple versions of the source code and designer files.

The copy and Paste operations (and the standard Ctrl+X, Ctrl+C, and Ctrl+V key-
board shortcuts) work both with text and with form components, as covered in the
next section.

Besides using cut and paste commands, the Delphi editor allows you to move source
code by selecting and dragging words, expressions, or lines. If you drag text while
pressing the Ctrl key, it will be copied instead of moved.

There are also additional special operations for the code editor, like MultiPaste,
which allows you to add the same modify multiple lines adding the same text before
each of them and after each of them. This is handy for embedding the text of a SQL

Marco Cantù, Essential Delphi IDE 10.3

44 - 02: Highlights of the Delphi IDE

statement in a string or adding multiple lines to a list box (like in the case in the
image below, in which the selected text has just numbers), just to mention two
examples.

Copying and Pasting Components

What you might not have noticed is that you can also copy components from the
form to the editor and back. Delphi places components in the Clipboard along with
their textual description. You can even edit the text version of a component, copy
the text to the Clipboard, and then paste it back into the form as a new component.

For example, if you place a button on a form, copy it, and then paste it into an editor
(which can be Delphi’s own source code editor or any word processor), you’ll get the
following description:

object Button1: TButton
 Left = 112
 Top = 80
 Width = 75
 Height = 25

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 45

 Caption = 'Button1'
 TabOrder = 0
end

 note Actually Delphi adds to the clipboard both the textual description of a component and an image of
the form. If the target editor support graphics, as you paste the content you'll get the option to
pick one or the other.

Now, if you change the name of the object, caption, or position, or add a new prop-
erty, these changes can be copied and pasted back to a form. Here are some sample
changes:

object MyButton: TButton
 Left = 200
 Top = 200
 Width = 180
 Height = 60
 TabOrder = 0
 Caption = 'My Button'
 Font.Name = 'Arial'
end

Copying the above description and pasting it into the form will create a button in the
specified position with the caption 'My Button' in an Arial font. To make use of this
technique, you need to know how to edit the textual representation of a component,
what properties are valid for that particular component, and how to write the values
for string properties, set properties, and other special properties. When Delphi
interprets the textual description of a component or form, it might also change the
values of other properties related to those you’ve changed, and change the position
of the component so that it doesn’t overlap a previous copy. You can see how Delphi
modifies the properties of the component by copying it back to the editor. For exam-
ple, this is what you get if you paste the text above in the form, and then copy it
again into the editor:

object MyButton: TButton
 Left = 200
 Top = 200
 Width = 180
 Height = 60
 Caption = 'My Button'
 Font.Charset = DEFAULT_CHARSET
 Font.Color = clWindowText
 Font.Height = -11
 Font.Name = 'Arial'
 Font.Style = []
 ParentFont = False
 TabOrder = 1
end

Marco Cantù, Essential Delphi IDE 10.3

46 - 02: Highlights of the Delphi IDE

As you can see, some lines have been added automatically, to specify other proper-
ties of the font. Of course, if you write something completely wrong, such as this
code:

object Button3: TButton
 Left = 100
 eight = 60
end

which has a spelling error (a missing ‘H’), and try to paste it into a form, Delphi will
show an error indicating what has gone wrong:

You can also select several components and copy them all at once, either to another
form or to a text editor. This might be useful when you need to work on a series of
similar components. You can copy one to the editor, replicate it a number of times,
make the proper changes, and then paste the whole group into the form again.

More Edit Commands

Along with the typical commands found on most Edit menus in Windows applica-
tions, Delphi includes a number of commands that are mostly related to forms. The
specific operations for forms can also be accessed through the form shortcut menu
(the local menu you can invoke with the right mouse button) and will be covered in
the next chapter.

One command not replicated in a form’s local menu is Lock Controls, which is very
useful for avoiding an accidental change to the position of a component in a form.
For example, you might try to double-click on a component and actually end up
moving it. Since there is no Undo operation on forms, protecting from similar errors
by locking the controls after the form has been designed can be really useful.

The Search Menu

The Search menu offers some alternative methods for finding text or logical element
of your program and eventually replace them. The basic Search | Find operation
(Ctrl+F) opens a search pane at the bottom of the editor window. Here you can type
your search, press enter and the editor will highlight all the hits, indicating the

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 47

number of matches. You can navigate the results with the arrows and modify some
of the search options with he matching check boxes.

A quicker way to search is to use Search | Incremental Search (Ctrl+E) which moves
to the closest match as you type, with no need to press enter to activate the search:

Incremental search has fewer options, and you can always switch back to the regular
search mode if you need more control.

note Originally, the two search modes had a more clear difference, with Find opening a dialog and
Incremental search using the editor toolbar. Since they were both modified to use a pane at the
bottom of the editor, they have become similar in their user interface, but the behavior remains
distinct. In general, Incremental search remains faster to use.

Marco Cantù, Essential Delphi IDE 10.3

48 - 02: Highlights of the Delphi IDE

A third and more classic approach is used by the Search | Replace command, which
opens a dialog for entering the text to find, the replacement text and some options:

All of the find commands above work only on the active editor file. For a broad
search you can use the Search | Find in Files command. This allows you to search
for a string in all of the source code files of a project, all the open files, or all the files
in a directory (optionally including its sub-directories), depending on the radio but-
ton you check in the Where group:

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 49

The result of the search will be displayed in the message area at the bottom of the
editor window. You can select an entry to open the corresponding file and show the
specific matches, and than jump to the line containing the text by clicking on it:

A common case is using the Find in Files command to search for components,
classes, and type definitions in the VCL source code.

There are a few configuration options for the Find in Files search. You can request
that Delphi shows the results in a different page as you do a new search, so the
results of previous search operations remain available. You can also use a check box
in the Find Text dialog box to group the search results by source code file, as in the
scenario above. Once you have many pages, you can press the Alt+Page Down and
Alt+Page Up key combinations to cycle through the tabs of this window. (The same
commands work for other tabbed views, but not all of them.)

Syntactic Searches

In the Search menu there are also a few options that allow you to search specific ele-
ments of the code, rather than pure text matches as the operations covered above.

Find Class is a bit of a misnomer, as it allows you to search for data types in general
(indicating the unit a class is into). Given this search is based on the active project,
this encompasses only units included in the project (directly or indirectly via a uses
statement). This is an example of the user interface:

Notice that this search work only with full match, that is if you omit the initial T in
the search above you won't get any of those results. This search will open the unit
with the definition of the symbol (something you can also achieve by using
Cltr+Mouse click on the same symbol in the editor.

Marco Cantù, Essential Delphi IDE 10.3

50 - 02: Highlights of the Delphi IDE

Find References and Find Local References provide a list of the locations where the
symbol selected in the editor appears within the current project or only within the
current unit, and displays them at the bottom of the editor screen. Here you can use
the local references (above) and all of them (below) for the TForm36 symbol:

The different compared to a text search is this distinguishes comments, text in
strings, from the use of a specific syntax element of the code. The drawback the code
needs to be correct (from the compiler perspective) for the search to produce
results.

Finally, Find Original Symbol moves you to the location in code where the symbol is
declared (in the local unit only, though).

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 51

The Goto Commands

Continuing in the Search menu there is IDE Insight (something I've already covered
in details earlier in this chapter) and two Goto Command:

• The Goto Line Number dialog lets you enter the line number (for the current
unit) and jumps to it. Thss is handy if you know the number you are inter-
ested in and the file is fairly long (so that scrolling to it is going to take extra
time):

• The Goto Address command might seem strange at first. It can be used only
while debugging the application and after you have compiled it, to find the
source code line corresponding to memory address of the compiled code.
This is an information that some error messages and exceptions show in
their display information. (In fact, this Delphi menu item was originally
called Find Error). Often, however, the error is not in one of the lines of your
code, but in a line of library or system code; in this case the Goto Address
command cannot might not be able to locate the offending line. This is the
user interface:

The View Menu

Most of the View menu commands can be used to display one of the windows and
panes of the Delphi environment, such as Project Manager, the Breakpoints list, or
the Object Inspector. Some of these panes are active by default, others make sense
only in specific scenarios. As this menu was getting too tall to fit on the screen, it has
been rearranged a few versions back to group the view commands by area:

Marco Cantù, Essential Delphi IDE 10.3

52 - 02: Highlights of the Delphi IDE

• Debug Windows activates debugger panes (most of them active by default in
the debug desktop configuration), which are covered in Chapter 8.

• Tool Windows activates the various panes of the IDE that are used while
designing forms or editing code.

• Desktops offers the same options for managing desktop settings available in
the corresponding title bar menu and covered in the “Desktop Settings” sec-
tion earlier in this chapter.

• Toolbars allows you to customize the toolbar by enabling various sections,
with options matching the toolbar local menu and covered in the section
“The Delphi Toolbar” later in this chapters

The commands on the second section of the View menu are commonly used, which
is why they are also available on the default toolbar. The Toggle Form/Unit (or F12)
command is used to move between the form you are working on and its source code
in the editor. The Units and Forms commands let you select one of the units or
forms in the current project – something you can also do using the Project Manager.
The dialog boxes activated by these menu items have a local search option:

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 53

 tip You can search for these entries also in the global Help Insight.

The New Edit Window command opens a second edit window (along with the corre-
sponding designer). It is the only way to view two source code files side by side in
Delphi, since the editor uses tabs to show the multiple files you can load. Each edit
windows has its own set of tabs and open files. Notice that you can drag a tab from
one edit window to the other to re-arrange their position (while you cannot open the
same file in both tabs).

The following section has two menu items for working with type libraries, which is a
fairly advanced area of Delphi.

The following four commands on the View menu can be used to activate the Wel-
come page (in case you closed it), the audit and metrics views (a topic I won't be
covering in the book) and the Configuration manager for project groups, a feature
related with project management and covered in Chapter 6.

Finally the last menu item, Broadcast to device, activates the ability to send the con-
tent of a design time form to your mobile device or desktop, using the matching
LivePreview application. If you don't plan using this feature, you should disable it,
given it opens a communication port for the purpose you probably don't need and
don't want to keep active.

The Refactor Menu

The next menu is fully focused on the refactoring support of the Delphi IDE> While
not updated in a while, this is a collection of nice features that help you write and
modify your source code. Refactoring is covered in details in Chapter 5, so I won't
go over the various menu command here.

Marco Cantù, Essential Delphi IDE 10.3

54 - 02: Highlights of the Delphi IDE

The Project Menu

The next pull-down menu, Project, has commands to manage a Delphi project and
compile it. A number of these menu items (particularly those for adding and remov-
ing elements of the project and those for building) are also available in the local
menu of the Project Manager window. Project management is explained in more
detail in Chapter 6.

The first section of the menu has these commands:

 Add to Project opens an Open File Dialog box to select an existing unit
to be added to the active project

 Remove from Project offers a list of the project units and allows you to
pick one to remove.

 Add to Repository offers a mechanism for adding a project to the Object
Repository, to be used as starting point for a future project. This is a sel-
dom used feature, these days.

 View Source opens the main project file source code (we saw an example
in the section “The Project File” towards the end of Chapter 1).

 Format Project Sources offers the ability to format the entire source
code of all of the units of the project. Automatic formatting is covered in
Chapter 4.

The second section has two menu items, Add New Project and Add Existing Project
that work at the project group level (Delphi can keep multiple projects open at the
same time in a project group). This is also covered in Chapter 6.

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 55

Next there is a section with the main commands for compiling and building the cur-
rent project (the different is that Compile – called Build in other system – works
only on the modified units, while Build – also called Build All – repeats the entire
process from scratch). Syntax Check does a quick scan of the code, with the com-
piler parsing it but skipping code generation. Information for gives summary data of
a the last compiled project:

Finally, Audits, Metrics, and Toxicity Metrics offer different types of information
about the code after analyzing it.

Marco Cantù, Essential Delphi IDE 10.3

56 - 02: Highlights of the Delphi IDE

The next section has two commands for the entire project group, Compile All
Projects and Build All Projects. I'll provide some more information on how to cus-
tomize their behavior in Chapter 6.

The final section of the Project menu has a number of unrelated commands:

 Resources and Images can be used to add additional external images
and other resource files to a project, so that these resources are bunlded
to the executable file:

 Modeling Support activates the UML-related modeling features that are
(still) part of Delphi – with features available only in the Enterprise edi-
tion.

 Languages sub-menu allows you to add support for localizing a VCL
application in different languages (this doesn’t' work for FireMonkey).
The localization technology in Delphi is fairly old and currently “not
supported” so I won't cover it in this book.

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 57

 Dependencies can be used to define dependencies for projects within a
project group, defining which projects need to be build before a given
project (notice you can also define the build sequence in a project
group):

 Project Page Options allows you to pick an HTML file already included
in the project as the page to be displayed when the project opens (a very
rarely used feature, to my knowledge):

 Deployment opens the Deployment dialog box. In a VCL application,
this will list run-time packages your application depend on, and you can
add additional files. As you later do the Deploy operation, these will all
be copied in a destination folder. For FireMonkey and on mobile the
same feature allows you to assemble all of the files needed to deploy on a
device or on an application store.

 Options is used to set compiler and linker options, application object
options, and so on. We will discuss project options in detail in Chapter 9
but also in other sections of the book in the context of related topics.

Marco Cantù, Essential Delphi IDE 10.3

58 - 02: Highlights of the Delphi IDE

The Run Menu

The Run menu could have been named Debug as well. Most of its commands are
related to debugging, including the Run command itself. When you run a program
within the Delphi environment, you execute it under the integrated debugger
(unless you disable the corresponding Environment option). The Run command
and the corresponding toolbar icon are among the most commonly used commands,
since Delphi automatically re-compiles a program before running it — at least if the
source code has changed. Simply hit the F9 key to compile and run a program.

As an alternative, the Run without Debugging menu allows you run the program
outside of the debugger. This makes the program faster to start and makes is behave
more like an end user would execute it. Operations the debugger intercepts, like
exceptions for example, won't trigger special processing if you run the program out-
side of the debugger.

The next command, Parameters, can be used to specify parameters to be passed on
the command line to the program you are going to run, and to provide the name of
an executable file that is loading your compiled code, when you want to debug a
DLL or a package:

In the same initial section of the menu there are also commands to attach the
debugger to a running application and detach it. What you can do it start a program
without debugging (or from Explorer) and later attach the debugger to it. Finally,
the first section has a sub-menu for ActiveX Server operations, which are in fact
COM Server operations, including registration and the like. The Register ActiveX
Server and Unregister ActiveX Server commands basically add or remove the Win-
dows Registry information about the ActiveX control defined by the current project.
Notice that these operations require to run the IDE with elevated permissions.

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 59

The following section has commands used during debugging, to execute the pro-
gram step by step, trace into, stop debugging, set breakpoints, inspect the values of
variables and objects, and so on. Some of these debugging commands are also avail-
able directly in the editor local menu and debugging in general is covered in
Chapter 8.

The Component Menu

The commands of the Component menu can be used to write components, add
them to a package, or to install packages in Delphi. The New Component command
invokes a Component Wizard:

This wizard shares some logic with the Install Component wizard, which is used to
add a unit with an existing component to a package.

Marco Cantù, Essential Delphi IDE 10.3

60 - 02: Highlights of the Delphi IDE

The commands of the last section perform quite distinct operations. Install Pack-
ages opens the package configuration options for the current project (a similar
dialog exists for the entire IDE as whole) and allows you to enable or disable regis-
tered packages or add a new existing, compiled package (.bpl) to the project or IDE:

Import Component (which was originally and more appropriately called Install
ActiveX Library) can be used to create a Delphi component encapsulating a type
library, An ActiveX server or COM server, or a .NET assembly respectively, using
the options in the first page of the wizard:

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 61

Finally, Import WSDL opens a wizard to create an interface for a SOAP server by
importing the server definition from a local file or online URL.

There is also a stand-alone command in this menu, Create Component Template,
which is used to create a very simple pseudo-component by copying the configura-
tion of an existing component. This is explained in the following sub-section.

Using Component Templates

Suppose you want to create a brand new application, with a similar button and a
similar event handler to a program you have written, like the Hello program of
Chapter 1. It is possible to copy a component to the Clipboard, and then paste it into
another form to create a perfect clone. However, doing so you copy only the proper-
ties of the component, and not the events associated with it.

Delphi allows you to copy one or more components, and install them as a new com-
ponent template. This way, you also copy the code of the methods connected with
the events of the component. Simply open the Hello example, or any other one,
select the component you want to move to the template (or a group of components),
and then select the Component | Create Component Template menu command.
This opens the Component Template Information dialog box, shown here:

Here you enter the name of the template, the page of the Component Palette where
it should appear, and a custom icon. By default, the template name is the name of
the first component you’ve selected followed by the word template. The default tem-
plate icon is the icon of the first component you’ve selected, but you can replace it
with an icon file. The name you give to the component template will be used to
describe it in the Tools palette.

In this case you might want to call it ThelloButton and after installing it you'll find
the following entry among your components:

If you select it, the IDE will place the component template in the current form and
you'll get a component with the given properties and also with the event handler's
code attached to it as in the original version.

Marco Cantù, Essential Delphi IDE 10.3

62 - 02: Highlights of the Delphi IDE

 tip All the information about component templates is stored in a single hidden file and there is appar-
ently no way to retrieve this information and edit a template. Now if you add it to a project and
modify it, you can install it again as a component template using the same name and overriding
the previous definition.

In general terms, using Component Templates is a nice trick that can save you some
time and effort, but they have been mostly superseded by frames, which extend and
expand on the concept with much more power and flexibility.

The Tools Menu

The Tools offers some global Delphi IDE configuration options (in the first section)
and links to external programs and tools (in the third section) that can be config-
ured with the Configure Tools menu item:

The first command, Options, opens the extremely detailed and complex Options
dialog (originally called Environment Options dialog) of the Delphi IDE. The dialog
box has many pages related to generic environment settings, packages and library
settings, many editor options, a page to configure the Tools Palette, one for the
Object Inspector, and one of the new Code Insight technology. Discussing those
options goes beyond the scope of this chapter, and many of them are covered in dif-
ferent sections of this book.

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 63

The Template Libraries command allows you to customize the Object Repository
(part of the content of the File | New | Other dialog box) and covered in Chapter 6.

The GetIt Package Manager command open the GetIt Package manager dialog box,
where you can search for additional components, IDE plug-ins, demos, libraries,
styles, and additional Delphi features provided by Embarcadero and third parties.
From there you can install them is a seamless way:

Manage Platforms is available for Delphi installations made via the (default) Online
Installer, and allows you to add platforms (meaning operating systems targets) you
didn't install at start up and additional features and options (like the Help file, the
product demos, unit testing, charting controls, InterBase Developer Edition and
more). The content of this dialog varies from release to release.

Patterns Organizer opens a repository of coding patterns tie with UML modeling
support integrated with Delphi and not very commonly used these days.

Build Tools offers the ability to configure external tools that can be invoked as part
of the build process to perform any possible external action before the project is
compiled, during compilation phases, or after the linker has completed generating
the binary files. This integrations allows you to configure build operations without
the need to use an external build system – but external build systems are in general
more powerful.

Translation Manager allows to configure the now deprecated VCL translation sup-
port (I already mentioned this as part of the Project | Languages menu item).

Moving to the second part of the menu, the Configure Tools command can be used
to add new entries in the final part of the menu, with the ability to invoke any exter-
nal executable and passing it some parameters that might depend on the current

Marco Cantù, Essential Delphi IDE 10.3

64 - 02: Highlights of the Delphi IDE

active project. Complex parameter can be built by clicking the Macros button in the
lower part of the Tool Properties dialog box:

The Tabs Menu

Like the Windows menu of a good old MDI application, the Tabs menu lists all
“windows” open in the IDE, that is all tabs open in the main editor window. It also
suggests the shortcuts you can use for circling over tabs left to right or right to left
(Ctrl+Tab and Ctrl+Shift+Tab).

The menu also lists available floating windows, if you are not using a docked IDE
configuration.

 note Using the undocked IDE is not recommended and might be formally deprecated in the future.

The Help Menu

The Help menu can be used to get information about Delphi from the local help
installed along with the product (if you selected that option) or from online
resources:

 Delphi Help and its sub-menus open local help files, if installed

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 65

 RAD Studio DocWiki open the online wiki (already displayed in the sec-
tion Asking for Help earlier in this chapter)

 Third-Party Help opens additional help files for Third Party tools, if
available

 Platform SDK Help sub-menus have links to online documentation for
the Microsoft Windows API and the Apple macOS platform-specific

The following section has a few links to online pages including Delphi product page
and Embarcadero website. This is followed by a menu item opening the exteranl
License Manager application, which helps you install additional product licenses
and check if they are properly configured and updated with your latest Update Sub-
scription renewals. The Welcome Configuration command opens the dialog
displayed at the first execution of the product.

Finally, the Help | About menu items displays the Delphi About box. In this win-
dow, you can see the product release version, information about your license,
installed third party tools and more. You can also type some not-so-hidden key com-
binations to see can see a list of the people involved in building Delphi.

 note The Help menu was often populated by third-party Delphi Wizards (before their default location
became the Tools menu).

The Local Menus

Although Delphi has a good number of menu items as we have seen in the sections
above, not all of the commands are available though the pull-down menus. In other
words, a large number of the main menu commands are available also in local
menus of specific windows and panes, but often local menus offer additional com-
mands not in the main menu. We'll explore some of the local menus while exploring
various windows of the IDE in coming chapters.

The Delphi Toolbar

The most commonly used menu items of the main menu are also available in the
toolbar and in the title menu bar. What is important to notice is that the Delphi IDE
toolbar is fully customizable.

Marco Cantù, Essential Delphi IDE 10.3

66 - 02: Highlights of the Delphi IDE

First, it is made of multiple areas (that is, multiple toolbar sections) and you can
select which ones are active, by using the toolbar local menu and selecting the vari-
ous elements:

Second you can drag the various sections of the toolbar to new positions, by drag-
ging the separator with 5 vertically align dots on the left of each toolbar section.

Third you can fully customize the toolbar by re-arranging the items and adding oth-
ers not initially available. The toolbar customization is done via a specific fairly
complex dialog box. As you open View | Toolbars | Customize of the Customize
menu items of the toolbar local menu, you see a first page with the various sections
and check boxes to activate them:

This is similar to what we can achieve with the local menu of the toolbar shown ear-
lier. If you move to the commands page however, you can now select one on the
many categories of commands (or actions) and drag them to one of the toolbar sec-
tions to add a new item. While that dialog is visible, you also move items from one

Marco Cantù, Essential Delphi IDE 10.3

02: Highlights of the Delphi IDE - 67

area of the toolbar to a different one, or move them off, deleting them. Here I've
added to new buttons (Options and Build Tools) at the right end of the toolbar:

What’s Next

In this chapter, I’ve offered you an overview of the Delphi IDE and a fairly detailed
analysis of its menus and the features they activate. Starting with the next chapter
I'm going to focus on specific activities you use the IDE for, like designing the user
interface of an application with the form designer (Chapter 3) or writing code in the
editor (Chapter 4).

From there I'll continue getting to more advanced features the Delphi IDE includes,
like code templates and projects management.

Marco Cantù, Essential Delphi IDE 10.3

68 - 03. Using the Form Designer

03. Using The

Form Designer

Given Delphi is a component-based RAD tool, it expected that developers write code
in its editor but also interact a lot with its visual designer. This can be used to work
on different type of “designer surfaces”:

 Forms are the most common type of designer surfaces, and the tool is in
fact generally known as Form Designer. Notice that there are significant
differences when working on working on a VCL form in the designer or a
FireMonkey form.

 Data Modules are containers of non-visual components, like database
connection objects or other types of configuration and data access com-
ponents

 Frames are some sort of panels that can be hosted by forms, offering a
mechanism to replicate a similar design

I have already guided you step by step on how to add a component to the form
designer and set its properties in the Object Inspector in Chapter 1. Rather than cov-
ering the basics, here I'm going over more detailed and non-obvious information
about the various activities related with designing forms.

Marco Cantù, Essential Delphi IDE 10.3

03. Using the Form Designer - 69

The VCL Form Designer

When you start a new, blank project, Delphi creates an empty form, and you can
start working with it. You can also start with an existing form (using various tem-
plates available). A project (an application) can have any number of forms.

In is important to remember two key elements of Delphi's architecture:

 Every component you place on a form (or data module or frame) and
every property you set is stored in a file describing the form, a dfm or fmx
file, that is bundled as part of the executable as a resource

 Every operation you do at design time (from adding a component to set-
ting properties to defining event handlers) can also be done at run-time
in the application code, even if this might be less convenient

Common operations you do with the form designer (or other design surfaces) are
adding components to it, selecting components and chancing their properties, asso-
ciating event handlers or creating new ones. These areas are all covered in the
following sections. To add a component you can drag and drop it from the Tool Pal-
ette to the Form Designer (or double click in the designer, or select it and than click
on the form in the position you want the component).

 note In this section I'll generally refer to the VCL form designer. I'm going to highlight which of the fea-
tures are specific to it. Later on I'll cover what's unique in the FireMonkey form designer instead.

Selecting and Moving a Components

You can select a component directly with the mouse in the Form Designer, use the
instance list of the Object Inspector, or use the Structure View, which is particularly
handy when a control is behind another one or is very small. You can see the Struc-
ture View for a form with a few panels and buttons here:

Marco Cantù, Essential Delphi IDE 10.3

70 - 03. Using the Form Designer

If one control covers another completely, you can use the Esc key to select the par-
ent control of the current one. Press Esc one or more times to select the form, or
press and hold Shift while you click the selected component. Doing so will deselect
the current component and select the form by default.

For moving component, just drag them in the designer. While doing so, a hint will
display the Left and Top positions. There are actually different hints for compo-
nents in the form designer:

 As you move the pointer over a component, the hint shows you the name
and type of the component. This is an alternative to the Show Compo-
nent Captions environment setting, which I tend to keep always active.

 As you resize a control, the hint shows the current size (the Width and
Height properties). Of course, this feature is available only for controls,
not for non-visual components (which are indicated in the Form
Designer by icons).

 As already mentioned, when you move a component, the hint indicates
the current position (the Left and Top properties).

There are two alternatives to using the mouse to set the position of a component.
You can either set values for the Left and Top properties, or you can use the arrow
keys while holding down Ctrl. Using arrow keys is particularly useful for fine-tuning
an element’s position (when the Snap To Grid option is active), as is holding down
Alt while using the mouse to move the control. If you press Ctrl+Shift along with an
arrow key, the component will move only at grid intervals. By pressing the arrow
keys while you hold down Shift, you can fine-tune the size of a component. Again,
you can also do this with the mouse and the Alt key.

note What if you need to move a control at design time by dragging it, but its area is covered by a child
control? Just drag the child control and then press the Esc key (while holding down the mouse
button) to switch the dragging operation to the parent control.

Marco Cantù, Essential Delphi IDE 10.3

03. Using the Form Designer - 71

Selecting Multiple Components

To select several components, click them with the mouse while holding down the
Shift key; or, if all the components fall into a rectangular area, drag the mouse to
“draw” a rectangle surrounding them. To select controls inside a container (say, the
buttons inside a panel), drag the mouse within the panel while holding down the
Ctrl key—otherwise, you move the panel.

To align multiple components or make them the same size, you can select them and
set the Top, Left, Width, or Height property for all of them at the same time. You
can also use some of the toolbar panels to align controls or change their relative
position (bring to front and send to back), as shortly covered in Chapter 1 – but this
is a less common feature compared to the early days of Delphi, where there were
fewer alternatives.

When you’ve finished designing a form, you can use the Lock Controls command of
the Edit menu to avoid accidentally changing the position of a component in a form.
This is particularly helpful, as there is no real Undo operation on forms (only an
Undelete one).

Design Guidelines

The design time guidelines available in Delphi offer you a lot of power for aligning
components to the sides, center, or the text baseline. This is a visual aid to properly
aligning controls on a form. You can align controls to one of their sides, here the
top:

Not only you can align the sides of a control with those of another one, but you can
even align the text baseline:

Marco Cantù, Essential Delphi IDE 10.3

72 - 03. Using the Form Designer

Controls automatically snap to the guidelines when they are close to them (if the
corresponding option is set). They also snap when they are at a given margin to the
border of the container control.

note Working with the Design Guidelines for the borders of the controls is quite obvious. But how does
the designer knows about the text baseline for a control? Of course, it doesn't: You need to pro-
vide a TComponentGuidelines class and register it with the RegisterComponentGuidelines
function. You can find more details in the DesignEditors and VCLEditors units of the ToolsAPI
VCL source code folder.
There is a gtBaseline value in the TDesignerGuideType enumeration, but it is not really refer-
enced in the code, while the class method TControlGuidelines.GetTextBaseline seems to
provide a default implementation. It looks like you can fully customize the behavior, but having a
ready-to-use example would make this easier

Form Designer Toolbars

The Delphi toolbar has a few buttons you can use when working with the form
designer, although as I mentioned earlier these are less commonly used compared
to the early days of Delphi when fewer alternative options were available. Still, some
of the commands of these toolbar panes, like those for equally spacing a number of
controls horizontally or vertically are quite handy. Here are the three designer-
related toolbar panes (dragged in front of the form to make this picture more
focused, but I generally keep them inside the toolbar at the top of the IDE):

Spacing operations are enabled when multiple components are selected and allow to
increase or reduce the spacing horizontally or vertically and to space the selected
controls equally.

Marco Cantù, Essential Delphi IDE 10.3

03. Using the Form Designer - 73

Position operations include ability to change the z-order (bring to front or move to
back) and to center the control or controls in the middle of the form, vertically or
horizontally.

This is different from the buttons used to align horizontal and vertical centers of the
selected controls that are part of the Align operations, along with aligning on each of
the four sides, make controls of the same size, and also enable the grid and snap to
grid options.

Same of the same operations are also available via direct commands or dialog boxes
activated via the local menu of the form designer, as described later.

The Form Positioner

Another interesting feature is the “Form Positioner” in the bottom right corner of
the designer surface:

There you can see, in small, the position of the form on the screen, which is useful if
the form uses absolute positioning (in many cases you let the operating system pick
the position or center the form). You can also use the Form Positioner to modify the
Top and Left properties of the form visually, by dragging that small rectangle.

A little known feature is that you can click the Form Positioner to get (temporarily)
a bigger view and use it to position the form more precisely. Finally, if you have a
background active in Windows, this is going to show up in the Form Positioner
background.

More Form Designer Tip

Among its other features, the Form Designer offers some additional information
and hints:

 The designer will show the name of a nonvisual component if you turn
on the Show Component Captions check box in the Environment

Marco Cantù, Essential Delphi IDE 10.3

74 - 03. Using the Form Designer

Options/Delphi Options/VCL Designer page of the Options dialog box.
This setting is disabled by default.

 As you move the pointer over a component, the hint shows you the name
and type of the component. If extended hints are enabled (in the same
settings page) you’ll also see details about the control’s position, size, tab
order, and more.

 As you resize a control, the hint shows the current size (the Width and
Height properties). As you move a component, the hint indicates the
current position (the Left and Top properties).

Form Designer Local Menu

While you are working on a form, the local menu has a number of useful features
(some of which are also available in the Edit pull-down of the main menu).

Quick Design is part of the Quick Edit operations (along with the Add Control, Add
Component, and Quick edit commands) covered in a later section in this chapter.

The Edit menu has the standard Cut, Copy and Paste operations, while the Control
menu offers the Bring To Front and Send To Back options to change the relative
position of components of the same kind (you can never bring a graphical compo-
nent in front of a component based on a window).

The Position sub-menu has commands to align controls to the grid, align two or
more selected controls, size them, and scale the entire form. The Align and Size

Marco Cantù, Essential Delphi IDE 10.3

03. Using the Form Designer - 75

operations offers the following dialog boxes, which has features someone similar to
the corresponding toolbar buttons I covered earlier:

The Flip Children menu options create a horizontally specular view of the selected
controls or all of the controls of the form, this reverse (right to left) position of the
controls in meant for languages written from the right.

The Tab Order command opens the tab position dialog box, which simplifies the
definition of the TabOrder property for a series of components, given you can list
them all and define the flow in the dialog and the editor will apply the changes to
the respective components property:

Marco Cantù, Essential Delphi IDE 10.3

76 - 03. Using the Form Designer

The Creation Order dialog box is somehow similar to the tab order editor, but it
affects the creation (and initialization) order of the non-visual controls. In most
cases, you can ignore it as even components with cross references have proper
mechanism allowing their creation in any order.

Hide Non-Visual Components is a relatively new option of the designer, used to
remove the icons for components from the form designer. They remain listed in the
Structure View and in the Object Inspector for selection.

note Other IDEs have a “gutter” area with non-visual components, but Delphi designers decided
against it and that decision was maintained over time.

In an inherited form (or a FireMonkey derived view), you can use the command
Revert to Inherited to restore the properties of the selected component to the values
of the parent form.

You can use the Add to Repository command to add a copy of the form you are
working on to a list of forms available for use in other projects (a rarely used fea-
ture).

Finally, you can use the View as Text command to close the form and open its tex-
tual description in the editor (as already explained in Chapter 1). A corresponding
command in the editor local menu (View as Form) will reverse the situation and get
back to the form designer view. As already discussed, in Delphi all the visual opera-
tions you do are saved in a DFM or FMX file (for VCL and FireMonkey), which by
default uses a text format (it used to be a binary format in the early versions of Del-
phi). The last command of the form designer local menu, Text DFM, toggles the
format used for the form file.

note Having designer files stored as text lets you operate more effectively with version-control systems.
When graphical elements are embedded, though, they are saved as binary data within the text file.

Form Designer Options

Along with specific local menu commands, you can set some form options by using
the Tools | Options command and choosing the User Interface | Form Designer sec-
tion. This page is shown here:

Marco Cantù, Essential Delphi IDE 10.3

03. Using the Form Designer - 77

The Grid options enable the display of the grid, automatic snapping , and designer
guidelines (for VCL only). The grid makes it easier to place components exactly
where you want them on the form by “snapping” them to fixed positions and sizes.
Without a grid, it is difficult to align two components manually (using the mouse).

The other options include component captions, hints, the form positioner, and how
to handle non-visual components. There is an option to disable the embedded
designer, which requires restarting the IDE and is not really recommended.

Finally the form creation options determine what happens when you add a new sec-
ondary form (or data module) to an existing application and affect the code added
to the main project file.

The Structure View for Designers

The Structure View is a window showing the tree-based structure of what's active in
the IDE, either a designer surface or a source code file. I'll cover the first case here
and the second in the next chapter.

The Structure View for a designer shows all the components and objects on the form
in a tree representing their relations. The most obvious is the parent/child relation:
if you place a panel on a form, a button inside the panel, and a button outside the
panel, the tree will show one button under the form and the other under the panel,
as shown here:

Marco Cantù, Essential Delphi IDE 10.3

78 - 03. Using the Form Designer

Besides parent/child, the Structure View shows other relations, such as
owner/owned, component/sub-object, and collection/item, plus various specific
relations, including dataset/connection and data source/dataset relations. Here,
you can see an example of the structure of a menu and the data source component
under the dataset – although they are formally sibling components owned by the
form:

The Structure View is particularly useful when working with collection properties
and the database tables fields at design time, and you can use it to create new items
rather than opening the specific designer.

You can drag components within the Structure View—for example, moving a com-
ponent from one container to another (in the case above, you can drag the Button2
control over the Panel1 control to make it a child of the panel. Moving instead of
using cut and paste provides the advantage that any connections among compo-
nents are not lost.

Marco Cantù, Essential Delphi IDE 10.3

03. Using the Form Designer - 79

Finally, right-clicking any element of the Structure View displays a shortcut menu
similar to the local menu for a component in the form designer – but this is handy
as you can more easily select the specific component even if its surface is covered by
other child controls. You can also delete items from the tree.

The Palette

Since the introduction of the “Galileo IDE” the Tool Palette (or just Palette, as the
IDE refers to it) replaced the Component Palette as a way to select a new component
to be added to a form or another designer surface. Notice that the Palette is context
sensitive and shows either the list of components (when a designer is active) or the
list of the New Items options (when the editor is active). The content of the Palette
can be filtered by typing it its search box – and we have already seen how you can
directly search for component also in the global IDE Insight search box positioned
in the IDE title bar.

As you start typing, the search is smart enough to allow for partial matches (the
results of course depends on the components you have installed):

note The search in the Palette does not support the use of wild-cards (?, *). This works in the global
search, which means the global search is more handy when you know portions of the words in the
component name. Try for example “but*gr” for Button Group, it works in IDE insight, but not in
the Palette search.

Marco Cantù, Essential Delphi IDE 10.3

80 - 03. Using the Form Designer

Each page of the palette has a number of components; each component has an icon
and a name, which appears as a “fly-by” hint (just move the mouse on the icon and
wait for a second). The hints show the official names of components, which I’ll use
in this book. They are drawn from the names of the classes defining the component,
without the initial T (for example, if the class is TButton, the name is Button).

If you need to place a number of components of the same kind into a form, shift-
click on that component in the palette. Then, every time you click on the form, Del-
phi adds a new component of that kind. To stop this operation, simply click on the
standard selector (the arrow icon) on the left side of the Component palette.

The Palette can be configured in many different ways. Its local menu has several
configurations settings:

As you can see you can create new custom categories and rename the existing ones
(after which you can drag component icons in this categories, re-arranging the
entire organization), you can collapse or expand categories (and enable/disable the
auto collapsing mechanism), lock the content (disabling dragging), and reset to
default). The Properties menu item opens the configuration page part of the Tools |
Options dialog box:

Marco Cantù, Essential Delphi IDE 10.3

03. Using the Form Designer - 81

From horizontal to vertical layout, with horizontal or vertical category captions,
component names (button captions) always displayed or in bold, and many differ-
ent behaviors, you can indeed customize the palette to the extreme – something
only a handful of developers seems to do. For example, this is the Palette without
component captions and auto-collapsing (multiple pages are kept open):

The Object Inspector

When you are designing a form, you use the Object Inspector to set values of com-
ponent or form properties. Its window lists the properties (or events) of the selected
element and their values in two re-sizable columns. An Object Selector at the top of
the Object Inspector indicates the current component and its data type; and you can
use it to change the current selection.

The Object Inspector doesn’t list all of the properties of a component. It includes
only the properties that can be set at design-time. As mentioned in Chapter 1, other
properties are accessible only at run-time. To know about all the different properties
of a component, refer to the documentation.

Marco Cantù, Essential Delphi IDE 10.3

82 - 03. Using the Form Designer

The right column of the Object Inspector allows only the editing operations appro-
priate for the data type of the property. Depending on the property, you will be able
to do the following actions:

 insert a string or a number by typing them
 choose from a list of options from a drop down list
 invoke a specific editor (indicated by an ellipsis button)

At times more than one of these options are available. For some properties, such as
Color, all three will work: you can type a value, select an element from the list, or
invoke a specific Color editor.

tip Double-clicking on the value of the property can toggle the value, open the next in the list, or open
an editor – depending on the property typo and its configuration.

Other properties, such as Font, can be customized either by expanding their sub-
properties (indicated by a plus or minus sign next to the name) or by invoking an
editor. Also when a property refers to another object you can expand it in place, like
a sub-property.

note Another feature of the Object Inspector is the ability to select the component referenced by a
property. To do this, double-click with the left mouse button on the property value while keeping
the Ctrl key pressed.

In other cases, such as with string lists, the special editors are the only way to
change a property. The sub-property mechanism is available with sets and with
classes. When you expand sub-properties, each of them has its own behavior in the
Object Inspector, again depending on its data type.

Over the years, Delphi added many features to the Object Inspector (some of them
have actually been removed or disabled, as they had issues like the rendering of font
names with the font itself). The drop-down list for a property in the Object Inspec-
tor can include graphical elements. Many of the relevant properties use this feature
by default: Color, Cursor and its variations, generally the ImageIndex property of
components connected with an ImageList (such as an action, a menu item, or a tool-
bar button), the Pen and Brush styles, and a few others. For example, here you can
see a portion of the list of cursors (for the Cursor properties):

Another feature that was added and ended up being ignored quite soon (although it
is still in the product) is the ability to group properties by category. To understand
this feature, you first need to make it visible. To display properties by category
instead of by name, right-click in the Object Inspector and choose the proper
Arrange option from the shortcut menu. You can see the effect of this choice here:

Marco Cantù, Essential Delphi IDE 10.3

03. Using the Form Designer - 83

Notice that a property can show up in multiple categories, as categories are not
mutually exclusive.

You can use the View sub-menu from the shortcut menu to hide properties of given
categories, regardless of the way they are displayed (that is, even if you prefer the
traditional arrangement by name, you can still hide the properties of some cate-
gories). If any property is hidden, the Object Inspector status bar will indicate how
many.

Here are some other tips related to the Object Inspector:

 The instance list at the top of the Object Inspector shows the type of the
object and allows you to choose a component. You might remove this list
to save some space, considering that you can select components in the
Structure View.

 You can optionally view read-only properties in the Object Inspector. Of
course, they are grayed out.

 Since Delphi 2010, there is a property editor for Boolean values, which
displays a check box you can use to toggle the value (although the drop
down list with True and False is still available).

 You can enable various sections of the Object Inspector with the Show
local menu:

Marco Cantù, Essential Delphi IDE 10.3

84 - 03. Using the Form Designer

 There is an optional Description panel at the bottom of the Object
Inspector. This is supposed to show information about the current prop-
erty, but all it does is repeat the property name (and as such it is quite
useless – it was introduce to support .Net frameworks!).

 There is also a Quick Action panel (originally called Component Editor
panel) which follows Visual Studio style of displaying actions you can do
on components via Component Editors – alternatively to using the local
menu after selecting a component:

Using Quick Edits

Quick Edits is a collection of features added to recent versions of Delphi and that
collectively help you design your forms and edit the components faster. All of the

Marco Cantù, Essential Delphi IDE 10.3

03. Using the Form Designer - 85

Quick Edit features show up in the local menu of the form designer (and also in the
Quick Action panel of the Object Inspector, as you can see in the last image of the
previous section). Many of the Quick Edits options depend on the selected compo-
nent.

The Quick Edit Dialog

The most visible feature, available for all components, is the QuickEdit dialog, acti-
vated from the local menu of the form on the selected component. While the dialog
is available for all components and controls, its content varies. In the most basic
case of a non-visual component, the only option of the dialog is to edit the compo-
nent's name:

Visual controls have a QuickEdit dialog including also the option to edit the caption
or text, with three additional buttons depending on the control features:

The Align button opens an alignment surface (here is the VCL one, the FireMonkey
one is a bit overcomplicated):

Marco Cantù, Essential Delphi IDE 10.3

86 - 03. Using the Form Designer

You can visually pick the alignment that you need, or use the two buttons on the
bottom for special cases. Similarly, the layout options offers the ability to easily cus-
tomize the margins and paddings of a visual control:

Having all of these related options in a single screen allows for faster configuration,
and having them graphically depicted makes it also much easier to understand what
you are doing.

tip The locker symbol in the layout configuration of the QuickEdit dialog is used to enter the same
element in all 4 related fields, without having to type the same value multiple times. It is more of a
synchronized edit, than a don't change locker.

The third button opens a color selection pane allowing you to pick either a prede-
fined system or web color, or a specific color value (via RGB, HSL, or mouse click
over the color selector):

Marco Cantù, Essential Delphi IDE 10.3

03. Using the Form Designer - 87

Quick Design Form

Another feature of QuickEdits is the ability to get started with a form predefined
layout. When the form is selected, the form designer local menu has an item that
offers four options, matching different default configurations:

Just select one to get going with a ready-to-use layout, like a tabbed dialog:

This is a very nice and quick way to get started with a new form.

Quickly Adding Controls and Components

Another feature of QuickEdits is the ability to add commonly used controls and
component rapidly via the local menu of the designer. Here for example you can see
the list of controls available on a form:

Marco Cantù, Essential Delphi IDE 10.3

88 - 03. Using the Form Designer

All other “container controls” like panels and tabs have similar options for adding
new controls as children (rather than in the form). All of these controls also have the
Add Component menu, but in this case this is for non visual components so it acts at
the form (or designer) level:

Special QuickEdits Options

The remaining features of QuickEdits depend on the component selected and its
properties. This features show up as additional items of the designer local menu.
For example, a form has a special “Quick Edit Icon” option (see the last image
above) opening the editor for its Icon property.

There are many other cases and scenarios, probably too many to offer an exhaustive
list, but here are a few worth noticing.

Data-aware controls have a Quick DataSource option (visible only if a data source is
indeed available). It lists available data source component for quick linking. Once
this is set, you can use the Quick Data Field option for connecting a dataset field
compatible with the component you are working on:

Marco Cantù, Essential Delphi IDE 10.3

03. Using the Form Designer - 89

Controls with a reference to an ImageList and an Image Index, can set both via a
specific Quick Select Images menu item:

Again, there are other similar menu items that can help doing common operations
for other controls, I recommend you keeping an eye for those as they can speed up
your work considerably.

Using Data Modules

Forms are surfaces where you define an application user interface and they can host
both visual and non visual controls. There are cases in which you want to define
application logic and you don't need a user interface, but still want to take advan-
tage of Delphi's design capabilities. In these cases you can use a Data Module, a
container of non visual components like data access ones. A data module lacks all of
the user interface related capabilities and it is lighter both in memory use and time
to create compared to a form.

Marco Cantù, Essential Delphi IDE 10.3

90 - 03. Using the Form Designer

As you create a data module you'll immediately see the differences, both in the
design surface UI and in the properties in the Object Inspector:

Of course, if you try to add a visual control to a data module, you'll get an error mes-
sage. The Tools palette, in any case, filters out the visual controls when a data
module is the active designer, preventing you from adding them in the first place.

Once you have created a data module, you can refer to it and its components even at
design time from a form (or another designer). Simply select the File | Use Unit
command and at this point the data module components will be available like the
local ones. Here is an example of selecting a data set of a data source on a form,
offering the link to a local data set and one on a data module:

Using Frames

Another designer surface is that of a frame. A frame is a collection of controls and
components that you can “replicate” in one of more forms. Whenever you need to
repeat the same layout in multiple locations, using a frame you can avoid duplicat-
ing the code and configuration, but reuse it. The frame defines a template and each
use is not actually a copy, but a reference: changes to the frame itself gets reflected
in each instance. At the same time, you retain the ability to customize and modify
the instances: each property you change gets disconnected from the original version
(and won't change any more if the original changes) and you can restore it to the
original value.

Marco Cantù, Essential Delphi IDE 10.3

03. Using the Form Designer - 91

Frames are a fairly advanced topic to cover here, so I've decided to provide only a
short introduction. Given I introduced Component Templates in the last chapter, let
me just highlight the difference between these two appraoches.

From Component Templates to Frames

When you copy one or more components from one form to another, you simply copy
all of their properties. A more powerful approach, as we have seen, is to create a
component template, which makes a copy of both the properties and the source
code of the event handlers. As you paste the template into a new form, by selecting
the pseudo-component from the palette, Delphi will replicate the source code of the
event handlers in the new form.

Component templates are handy when different forms need the same group of com-
ponents and associated event handlers. The problem is that once you place an
instance of the template in a form, Delphi makes a copy of the components and their
code, which is no longer related to the template. There is no way to modify the tem-
plate definition itself, and it is certainly not possible to make the same change
effective in all the forms that use the template. Am I asking too much? Not at all.
This is what the frames technology in Delphi does.

A frame is a sort of panel you can work with at design time in a way similar to a
form. You simply create a new frame, place some controls in it, and add code to the
event handlers. After the frame is ready you can open a form, select the Frame
pseudo-component from the Standard page of the Component Palette, and choose
one of the available frames (of the current project). After placing the frame in a
form, you’ll see it as if the components were copied to it. If you modify the original
frame (in its own designer), the changes will be reflected in each of the instances of
the frame.

Like forms, frames define classes, so they fit within the VCL object-oriented model
much more easily than Component Templates. As you might imagine from this
short introduction, frames are a powerful technique.

Marco Cantù, Essential Delphi IDE 10.3

	Essential Delphi IDE 10.3
	01: A Form Is a Window
	Creating Your First Form
	Adding a Title
	Saving the Form

	Using Components
	Changing Properties
	Responding to Events
	Compiling and Running a Program
	Changing Properties at Run-Time
	Adding Code to the Program
	A Two-Way Tool
	Looking at the Source Code
	The Textual Description of the Form
	The Project File

	What’s Next

	02: Highlights of the Delphi IDE
	Delphi IDE Foundations
	Different Versions of Delphi
	A Short History of the Delphi IDE
	A Matter of “Personality” (-p flag)
	Installation Folders
	Registry Settings and Using Alternative Configurations (-r flag)

	Delphi IDE Overview
	A Light or Dark IDE
	Desktop Settings
	The Welcome Page
	The IDE Overall Structure

	IDE Insight
	Asking for Help
	Delphi Menus and Commands
	The File Menu
	The File | New Sub-Menu
	The File | Open Commands
	The Other File Menu Commands

	The Edit Menu
	Copying and Pasting Components
	More Edit Commands

	The Search Menu
	Syntactic Searches
	The Goto Commands

	The View Menu
	The Refactor Menu
	The Project Menu
	The Run Menu
	The Component Menu
	Using Component Templates

	The Tools Menu
	The Tabs Menu
	The Help Menu
	The Local Menus

	The Delphi Toolbar
	What’s Next

	03. Using the Form Designer
	The VCL Form Designer
	Selecting and Moving a Components
	Selecting Multiple Components
	Design Guidelines
	Form Designer Toolbars
	The Form Positioner
	More Form Designer Tip
	Form Designer Local Menu
	Form Designer Options

	The Structure View for Designers
	The Palette
	The Object Inspector
	Using Quick Edits
	The Quick Edit Dialog
	Quick Design Form
	Quickly Adding Controls and Components
	Special QuickEdits Options

	Using Data Modules
	Using Frames
	From Component Templates to Frames

