
Essential SQL

2874CD1EssentialSQL.qxd 6/25/01 3:06 PM Page 1

http://www.sybex.com

2

This bonus chapter is provided with Mastering Delphi 6. It is a basic introduction to SQL
to accompany Chapter 14, “Client/Server Programming.”

RDBMS packages are generally based so closely on SQL (Structured Query Language,
commonly pronounced “sequel”) that they are often called SQL servers. The SQL standard is
defined by an ANSI/ISO committee, although many servers use custom extensions to the last
official standard (called SQL-92 or SQL2). Recently many servers have started adding object
extensions, which should be part of the future SQL3 standard.

Contrary to what its name seems to imply, SQL is used not only to query a database and
manipulate its data, but also to define it. SQL actually consists of two areas: a Data Definition
Language (DDL), including the commands for creating databases and tables; and a Data
Manipulation Language (DML), including the query commands. The next two sections will
explore these two distinct areas.

NOTE All of the SQL snippets presented in this chapter have been tested with InterBase 5 and 6.

SQL: The Data Definition Language
The DDL commands are generally used only when designing and maintaining a database;
they are not used directly by a client application. The starting point is the create database

command, which has a very simple syntax:
create database “mddb.gdb”;

This command creates a new database (in practice, a new InterBase GDB file) in the current
directory or in the indicated path. In the above statement, notice the final semicolon, used as
a command terminator by the InterBase console. The opposite operation is drop database,
and you can also modify some of the creation parameters with alter database.

NOTE In general, client programs should not operate on metadata, an operation that in most organi-
zations would compete with the database administrator’s responsibilities. I’ve added these calls
to a simple Delphi program (called DdlSample) only to let you create new tables, indexes, and
triggers in a sample database. You can use that example while reading the following sections.
As an alternative, you can type the commands in the Windows Interactive SQL application.

Essential SQL

2874CD1EssentialSQL.qxd 6/25/01 3:06 PM Page 2

http://www.sybex.com

3

Data Types
After creating the database, you can start adding tables to it with the create table command.
In creating a table, you have to specify the data type of each field. SQL includes several data
types, although it is less rich than Paradox and other local databases. Table 11.1 lists SQL
standard data types and some other types available on most servers.

TABLE 11.1: The Data Types Used by SQL

Data Type Standard Usage

char, character (n) Yes Indicates a string of n characters. Specific servers or
drivers can impose a length limit (32,767 characters
for InterBase).

int, integer Yes An integer number, usually four bytes but platform
dependent.

smallint Yes A smaller integer number, generally two bytes.

float Yes A floating-point number.

double (precision) Yes A high-precision floating-point number.

numeric (precision, scale) Yes A floating-point number, with the indicated precision
and scale.

date No A date. Implementation of this data type varies from
server to server.

blob No An object that holds a large amount of binary data
(BLOB stands for binary large object).

varchar No A variable-size string used to avoid the space con-
sumption of a fixed large string.

NOTE The TStringField class in Delphi can distinguish between char and varchar types, indicat-
ing the actual type in a property and fixing some the problems of using a char that’s not
padded with trailing spaces in the where clause of an update statement.

Programmers who are used to Paradox and other local engines will probably notice the
absence of a logical or Boolean type, of date and time fields (the date type in InterBase holds
both date and time), and of an AutoInc type, which offers a common way to set up a unique
ID in a table. The absence of a logical type can create a few problems when upsizing an exist-
ing application. As an alternative, you can use a smallint field with 0 and 1 values for True
and False, or you can use a domain, as explained in the next section. An AutoInc type is pre-
sent in some servers, such as Microsoft SQL Server, but not in InterBase. This type can be
replaced by the use of a generator, as discussed in the book.

SQL: The Data Definition Language

2874CD1EssentialSQL.qxd 6/25/01 3:06 PM Page 3

http://www.sybex.com

4

Domains
Domains can be used to define a sort of custom data type on a server. A domain is based on
an existing data type, possibly limited to a subset (as in a Pascal subrange type). A domain is a
useful part of a database definition, as you can avoid repeating the same range check on sev-
eral fields, and you can make the definition more readable at the same time.

As a simple example, if you have multiple tables with an address field, you can define a type
for this field and then use this type wherever an address field is used:

create domain AddressType as char(30);

The syntax of this statement also allows you to specify a default value and some constraints,
with the same notation used when creating a table (as we’ll see in the next section). This is the
complete definition of a Boolean domain:

create domain boolean as smallint default 0 check (value between 0 and 1);

Using and updating a domain (with the alter domain call) makes it particularly easy to
update the default and checks of all the fields based on that domain at once. This is much
easier than calling alter table for each of the tables involved.

Creating Tables
In the create table command, after the name of the new table, you indicate the definition of
a number of columns (or fields) and some table constraints. Every column has a data type and
some further parameters:

• not null indicates that a value for the field must always be present (this parameter is
mandatory for primary keys or fields with unique values, as described below).

• default indicates the default value for the field, which can be any of the following: a
given constant value, null, or user (the name of the user who has inserted the record).

• One or more constraints may be included, optionally with a name indicated by the
constraint keyword. Possible constraints are primary key, unique (which indicates
that every record must have a different value for this field), references (to refer to a
field of another table), and check (to indicate a specific validity check).

Here is an example of the code you can use to create a table with simple customer information:
create table customer (
cust_no integer not null primary key,
firstname varchar(30) not null,
lastname varchar(30) not null,
address varchar(30),
phone_number varchar(20)

);

Essential SQL

2874CD1EssentialSQL.qxd 6/25/01 3:06 PM Page 4

http://www.sybex.com

5

In this example, we’ve used not null for the primary key and for the first and last name
fields, which cannot be left empty. The table constraints can include a primary key using
multiple fields, as in:

create table customers (
cust_no integer not null,
firstname varchar(30) not null,
...
primary key (cust_no, name)

);

NOTE The most important constraint is references, which allows you to define a foreign key for a
field. A foreign key indicates that the value of the field refers to a key in another table (a master
table). This relation makes the existence of the field in the master table mandatory. In other
words, you cannot insert a record referring to a nonexistent master field; nor can you destroy
this master field while other tables are referencing it.

Once you’ve created a table, you can remove it with the drop table command, an opera-
tion that might fail if the table has some constrained relations with other tables.

Finally, you can use alter table to modify the table definition, removing or adding one or
more fields and constraints. However, you cannot modify the size of a field (for example, a
varchar field) and still keep the current contents of the table. You should move the contents
of the resized field into temporary storage, drop the field, add a new one with the same name
and a different size, and finally move back the data.

Indexes
The most important thing to keep in mind about indexes is that they are not relevant for the
definition of the database and do not relate to the mathematical relational model. An index
should be considered simply a suggestion to the RDBMS on how to speed up data access.

In fact, you can always run a query indicating the sort order, which will be available inde-
pendently from the indexes (although the RDBMS can generate a temporary index). Of
course, defining and maintaining too many indexes might require a lot of time; if you don’t
know exactly how the server will be affected, simply let the RDBMS create the indexes it
needs.

The creation of an index is based on the create index command:
create index cust_name on customers (name);

You can later remove the index by calling drop index. InterBase also allows you to use the
alter index command to disable an index temporarily (with the inactive parameter) and re-
enable it (with the active parameter).

SQL: The Data Definition Language

2874CD1EssentialSQL.qxd 6/25/01 3:06 PM Page 5

http://www.sybex.com

6

Views
Besides creating tables, the database allows you to define views of a table. A view is defined
using a select statement and allows you to create persistent virtual tables mapped to the
physical ones. From Delphi, views look exactly the same as tables.

Views are a handy way to access the result of a join many times, but they also allow you to
limit the data that specific users are allowed to see (restricting access to sensitive data). When
the select statement that defines a view is simple, the view can also be updated, actually updat-
ing the physical tables behind it; otherwise, if the select statement is complex, the view will be
read-only.

Migrating Existing Data
There are two alternatives to defining a database by manually writing the DDL statements. One
option is to use a CASE tool to design the database and let it generate the DDL code. The other
is to port an existing database from one platform to another, possibly from a local database to
a SQL server. The Enterprise version of Delphi includes a tool to automate this process, the Data
Pump Wizard.

The aim of this tool is to extract the structure of a database and recreate it for a different platform.
Before starting the Data Pump, you should use BDE Administrator to create an alias for the
database you want to create. Using Data Pump is quite simple: You select the source alias and
the target alias; then you select the tables to move.

When you select a table (for example, the EMPLOYEE table) and click Next, the Data Pump
Wizard will verify whether the upsizing operation is possible. After few seconds the wizard will
display a list of the tables and let you modify a few options.

If the field conversion is not straightforward, the Data Pump will show the message “Has Problems”
or “Modified.” After modifying the options, if necessary, you can click the Upsize button to
perform the actual conversion. By selecting a field, you can verify how the wizard plans
to translate it; then, clicking the Modify Table Name or Field Mapping Information For Selected
Item button, you can change the actual definition.

An alternative to the use of the Data Pump Wizard (available only in Delphi Enterprise) is the
BatchMove component, which does a default conversion of the tables and cannot be fine-
tuned. Finally, you can simply use the Database Desktop, create a new table on the server, and
click the Borrow Struct button to extract the table definition from an existing local table.

Essential SQL

2874CD1EssentialSQL.qxd 6/25/01 3:06 PM Page 6

http://www.sybex.com

7

SQL: The Data Manipulation Language
The SQL commands within the Data Manipulation Language are commonly used by pro-
grammers, so I’ll describe them in more detail. There are four main commands: select,
insert, update, and delete. All these commands can be activated using a Query component,
but only select returns a result set. For the others, you should open the query using the
ExecSQL method instead of Open (or the Active property).

Select
The select statement is the most common and well-known SQL command; it’s used to
extract data from one or more tables (or views) of a database. In its simplest form, the com-
mand is

select <fields> from <table>

In the <fields> section, you can: indicate one or more fields of the table, separated by com-
mas; use the * symbol to indicate all the table fields at once; or even specify an operation to
apply to one or more fields. Here is a more complex example:

select upper(name), (lastname || “,” || firstname) as fullname
from customers

In this code, upper is a server function that converts all the characters to uppercase, the
double-pipe symbol (||) is the string-chaining operator, and the optional as keyword gives
a new name to the overall expression involving the first and last name.

By adding a where clause, you can use the select statement to specify which records to
retrieve as well as which fields you are interested in:

select *
from customers
where cust_no = 100

This command selects a single record, the one corresponding to the customer whose ID
number is 100. The where clause is followed by one or more selection criteria, which can be
joined using the and, or, and not operators. Here is an example:

select *
from customers
where cust_no=100 or cust_no=200

The selection criteria can contain functions available on the server and use standard opera-
tors, including +, –, >, <, =, <>, >=, and <=. There are also few other special SQL operators:

is null Tests whether the value of the field is defined.

in <list> Returns True if the value is included in a list following the
operator.

between <min> and <max> Indicates whether the value is included in the range.

SQL: The Data Manipulation Language

2874CD1EssentialSQL.qxd 6/25/01 3:06 PM Page 7

http://www.sybex.com

8

Here is an example of these operators:
select *
from customers
where address is not null and cust_no between 100 and 150

Another powerful operator, used to perform pattern matching on strings, is like. For example,
if you want to look for all names starting with the letter B, you can use this statement:

select *
from employee
where last_name like “B%”

The % symbol indicates any combination of characters and can also be used in the middle of a
string. For example, this statement looks for all the names starting with B and ending with n:

select *
from employee
where upper(last_name) like “B%N”

The use of upper makes the search case-insensitive and is required because the like opera-
tor performs a case-sensitive matching. An alternative to like is the use of the containing
and starting with operators. Using like on an indexed field with InterBase might produce a
very slow search, as the server won’t always use the index. If you are looking for a match in
the initial portion of a string, it is better to use the starting with expression, which enables the
index and is much faster.

Another option is to sort the information returned by the select statement by specifying
an order by clause, using one or more of the selected fields:

select *
from employee
order by lastname

The asc and desc operators can be used for ascending and descending order; the default is
ascending.

An important variation of the select command is given by the distinct clause, which
removes duplicated entries from the result set. For example, you can see all the cities where
you have customers with this expression:

select distinct city
from customer

The select command can also be used to extract aggregate values, computed by standard
functions:

avg Computes the average value of a column of the result set (works only
for a numeric field).

Essential SQL

2874CD1EssentialSQL.qxd 6/25/01 3:06 PM Page 8

http://www.sybex.com

9

count Computes the number of elements in the result set; that is, the num-
ber of elements satisfying the given condition.

max and min Compute the highest and lowest values of a column in the result set.

sum Computes the total of the values of a column of the result set. (It
works only for numeric fields.)

These functions are applied to the result set, usually to a specific column, excluding the
null values. This statement computes the average salary:

select avg(salary)
from employee

Another important clause is group by, which lets you aggregate the elements of the result
set according to some criterion before computing aggregate values with the functions listed
above. For example, you might want to determine the maximum and average salary of the
employees of each department:

select max (salary), avg (salary), department
from employee
group by department

Notice that all the noncalculated fields must appear in the group by clause. The following
is not legal:

select max (salary), lastname, department
from employee
group by department

TIP When you extract aggregate values, it is better to use an alias for the result field with the as
keyword. This makes it easier to refer to the resulting value in your Delphi code.

The aggregate values can also be used to determine the records in the result set. The
aggregate functions cannot be used in the where clause, but they are placed in a specific hav-
ing section. The following statement returns the highest salary of each department, but only
if the value is above 40,000:

select max(salary) as maxsal, department
from employee
group by department
having max(salary) > 40000

Another interesting possibility is to nest a select statement within another one, forming a
subquery. Here is an example, used to return the highest-paid employee (or employees):

select firstname, lastname
from employee
where salary = (select max(salary) from employee)

SQL: The Data Manipulation Language

2874CD1EssentialSQL.qxd 6/25/01 3:06 PM Page 9

http://www.sybex.com

10

We could not have written this code with a single statement, since adding the name in the
query result would have implied adding it to the group by section as well.

Inner and Outer Joins
Up to now, our example select statements have worked on single tables—a serious limita-
tion for a relational database. The operation of merging data from multiple source tables is
called a table join. The SQL standard supports two types of joins, called inner and outer.

An inner join can be written directly in the where clause:
select *
from <table1>, <table2>
where <table1.keyfield>=<table2.externalkey>

This is a typical example of an inner join used to extract all the fields of each table involved.
An inner join is handy for tables with a one-to-one relation (one record of a table corresponding
only to one record of the second table). Actually, the standard syntax should be the following,
although the two approaches usually generate the same effect:

select *
from <table1> left join <table2>
on <table1.keyfield>=<table2.externalkey>

An outer join, instead, can be specifically requested with the statement:
select *
from <table1> left outer join <table2>
on <table1.keyfield>=<table2.keyfield>

The main difference from an inner join is that the selected rows of an outer join will not
consider the null fields of the second table. There are other types of joins, including these:
the self-join, in which a table merges with itself; the multi-join, which involves more than
two tables; and the Cartesian product, a join with no where condition, which merges each
row of a table with each row of the second one, usually producing a huge result set. The
inner join is certainly the most common form.

Insert
The insert command is used to add new rows to a table or an updateable view. When you
insert a new record in a DBGrid connected with a SQL server table, the BDE generates an
insert command and sends it to the server. Besides this implicit use, there are several cases
in which you’ll want to write explicit SQL insert calls (including the use of cached updates,
which we’ll discuss later in this chapter).

Essential SQL

2874CD1EssentialSQL.qxd 6/25/01 3:06 PM Page 10

http://www.sybex.com

11

Unless you add a value for each field, you should list the names of the fields you are actu-
ally providing, as in the following code:

insert into employee (empno, lastname, firstname, salary)
values (0,”brown”, “john”, 10000)

You can also insert in a table the result set of a select statement (if the fields of the target
table have the same structure of the selected fields), with this syntax:

insert into <table> <select statement>

Update
The update command modifies one or more records of a table or view. Delphi generates an
update call every time you edit data with visual controls connected to a table or a live query
on a SQL server. Again, there are also cases where you’ll want to use the update statement
directly.

In an update statement, you can indicate which record to modify, by using a where condi-
tion similar to that of a select statement. For example, you can change the salary of a spe-
cific employee with this call:

update employee
set salary = 30000
where emp_id = 100

WARNING A single update instruction can update all the records that satisfy a given condition. An incor-
rect where clause could unintentionally update many records, and no error message would be
displayed.

The set clause can indicate multiple fields, separated by commas, and it can use the cur-
rent values of the fields to compute the new values. For example, the following statement
gives a nice raise to the employees hired before January 1, 1990:

update employee
set salary = salary * 1.20
where hiredate < “01-01-1990”

Delete
The delete command is equally simple (although its misuse can be quite dangerous). Again,
you generally remove records using a visual component, but you can also issue a SQL com-
mand like the following:

delete from employee
where empid = 120

SQL: The Data Manipulation Language

2874CD1EssentialSQL.qxd 6/25/01 3:06 PM Page 11

http://www.sybex.com

12

You simply indicate a condition identifying the records to delete. If you issue this SQL com-
mand with a Query component (calling ExecSQL), you can then use the RowsAffected prop-
erty to see how many records were deleted. The same applies to the update commands.

Building Queries Visually in Delphi (with SQL Builder)
As we’ve seen, SQL has a great many commands, particularly in relation to select state-
ments. And we haven’t actually seen them all! While the DDL commands are generally used
by a database administrator, or only for the initial definition of the database, DML com-
mands are commonly used in everyday Delphi programming work.

To help with the development of correct SQL statements, Delphi Enterprise includes a
tool called SQL Builder, which unfortunately can be used only through a BDE connection
(even if you can later copy the query and use it, for example, with a dbExpress dataset). You
easily activate it by right-clicking a Query component.

Using SQL Builder is very simple. You choose the database you want to work on, and then
you select one or more tables, placing them in the work area. After selecting the proper para-
meters, as explained below, you can use the command Query ➢ Run Query (or F9) to see the
result of the query or the command Query ➢ Show SQL (F7) to see the source code of the
select statement you’ve generated.

In the selected tables, you can simply mark the fields you want to see in the result set. The
check box near the name of the table selects all of its fields. But the real power of SQL
Builder lies in two features. First, you can drag a field from one table onto another table to
join them.

The other powerful feature is the Query notebook, the multipage control at the bottom of
the SQL Builder window. Here is a short description of each of the pages:

The Criteria page indicates the selection criteria of the where clause. By selecting one
of the fields of the result table, you can indicate a comparison against a fixed value or
another field, and you can use like, is null, between, and other operators. Using the
local menu of the grid present in this page, you can also activate the exist operator or
an entire SQL expression. This page allows you to combine multiple conditions with
the and, or, and not operators, but it doesn’t allow you to specify a precedence among
these operators by adding parentheses.

The Selection page lists all the fields of the result set and allows you to give them an
alias. With the local menu, you can also introduce aggregate functions (sum, count, and
so on). Finally, the upper-left check box indicates the distinct condition.

Essential SQL

2874CD1EssentialSQL.qxd 6/25/01 3:06 PM Page 12

http://www.sybex.com

13

The Grouping page corresponds to the group by clause. SQL Builder automatically
groups all the fields that are used in the aggregate functions, as required by the SQL
standard.

The Group Criteria page corresponds to a having clause, which is available in con-
junction with aggregate functions. The operations are similar to those of the Selection
page and are activated by using the local menu.

The Sorting page corresponds to the order by clause. You simply select the field you
want to sort and then select the ascending or descending sort.

The Joins page is the last but probably the most powerful, as it allows you to define
join conditions, beyond the simple dragging of a field from one table to another in the
work area. This page allows you to fine-tune the join request by indicating its type
(INNER or OUTER) and selecting conditions other than the equality test.

To better understand how to use the SQL Builder, we can build an actual example based on
the sample InterBase database installed by Delphi (and corresponding to the LocalIB alias).
The example is in the SqlBuilder directory and its form has a Query, a DataSource, and a
DBGrid component, connected as usual. The DatabaseName property of the Query compo-
nent is set to IBLocal, and right-clicking the component activates SQL Builder.

We want to create a query including the first and last name, department, title, and salary of
each employee. This operation requires two joins. Choose the Employee, Department, and
Job tables. Click the Dep_No field of the Department table and drag the cursor over the
Dep_No field of the Employee table. Similarly, connect the Job table with the Employee
table using the three fields Job_Code, Job_Grade, and Job_Country.

After creating the joins, select the fields you want to see in the result set: First_ Name,
Last_Name, and Salary from the Employee table; Department from the Department table;
and Job_Title from the Job table. Finally, move to the Sorting page of the Query notebook
and select Department.Department from the Output Fields list to sort the result set by
department.

The following should be the generated SQL:
select employee.first_name, employee.last_name, department.department,
job.job_title, employee.salary

from employee employee
inner join department department
on (department.dept_no = employee.dept_no)
inner join job job
on (job.job_code = employee.job_code)
and (job.job_grade = employee.job_grade)
and (job.job_country = employee.job_country)

order by department.department

SQL: The Data Manipulation Language

2874CD1EssentialSQL.qxd 6/25/01 3:06 PM Page 13

http://www.sybex.com

14

We might add an extra where clause to choose only the employee with a high salary. Simply
move to the Selection page, select the Employee.Salary field, go to the column Operator >=,
and type the value 100,000. Executing the query, you’ll see a limited number of records, and
looking at the SQL source you’ll see the extra statement:

where employee.salary >= 100000

Finally, note that it is possible to export and import the SQL code from a plain text file.
Simply by closing SQL Builder, you will also save the text of the query in the SQL property of
the related Query component.

Essential SQL

2874CD1EssentialSQL.qxd 6/25/01 3:06 PM Page 14

http://www.sybex.com

	copyright: Copyright ©2001 SYBEX, Inc., Alameda, CA
	link:

