
The RichBar Example

2874CD2.qxd 6/25/01 3:05 PM Page 1

http://www.sybex.com

2

This bonus chapter is provided with Mastering Delphi 6. It is an introduction to the basic
features of the RichBar example, discussed in Chapter 7 of the book, and of the follow-up
MdEdit example, discussed in Chapter 8.

This document explains how you create a simple editor based on the RichEdit control,
using Delphi 6. The program has a toolbar and implements several features, including a com-
plete scheme for opening and saving the text files, discussed in this document. In fact, we want
to be able to ask the user to save any modified file before opening a new one, to avoid losing
any changes. Sounds like a professional application, doesn’t it?

File Operations
The most complex part of this program is implementing the commands of the File pull-
down menu—New, Open, Save, and Save As. In each case, we need to track whether the cur-
rent file has changed, saving the file only if it has. We should prompt the user to save the file
each time the program creates a new file, loads an existing one, or terminates.

To accomplish this, I’ve added a field, a property, and three public methods to the class
describing the form of the application:

private
FModified: Boolean;
FileName: string;
procedure SetModified(const Value: Boolean);
property Modified: Boolean read FModified write SetModified;

public
function SaveChanges: Boolean;
function Save: Boolean;
function SaveAs: Boolean;

The FileName string and the Modified property are set when the form is created, by exe-
cuting the code used to define a new file. These vales are later changed when a new file is
loaded or the user renames a file with the Save As command. Here is the startup code:

procedure TFormRichNote.FormCreate(Sender: TObject);
begin
Application.Title := Caption;
NewExecute (Self);

end;

The value of the flag changes as soon as you type new characters in the RichEdit control
(in its OnChange event handler):

procedure TFormRichNote.RichEdit1Change(Sender: TObject);
begin

The RichBar Example

2874CD2.qxd 6/25/01 3:05 PM Page 2

http://www.sybex.com

3

// enables save operations
Modified := True;

end;

When a new file is created, the program checks whether the text has been modified. If so,
it calls the SaveChanges function, which asks the user whether to save the changes, discard
them, or skip the current operation:

procedure TFormRichNote.New1Click(Sender: TObject);
begin
if not Modified or SaveChanges then
begin
RichEdit1.Text := ‘’;
Modified := False;
FileName := ‘’;
Caption := ‘RichNote - [Untitled]’;

end;
end;

If the creation of a new file is confirmed, some simple operations take place, including
using ‘Untitled’ instead of the file name in the form’s caption.

Short-Circuit Evaluation
The expression if not Modified or SaveChanges then requires some explanation. By
default, Pascal performs what is called “short-circuit evaluation” of complex conditional
expressions. The idea is simple: if the expression not Modified is true, we are sure that the
whole expression is going to be true, and we don’t need to evaluate the second expression. In
this particular case, the second expression is a function call, and the function is called only if
Modified is True. This behavior of or and and expressions can be changed by setting a Delphi
compiler option called Complete Boolean Eval. You can find it on the Compiler page of the
Project Options dialog box.

The message box displayed by the SaveChanges function has three options. If the user selects
the Cancel button, the function returns False. If the user selects No, nothing happens (the file
is not saved) and the function returns True, to indicate that although we haven’t actually saved
the file, the requested operation (such as creating a new file) can be accomplished. If the user
selects Yes, the file is saved and the function returns True.

In the code of this function, notice in particular the call to the MessageDlg function used as
the value of a case statement:

function TFormRichNote.SaveChanges: Boolean;
begin

File Operations

2874CD2.qxd 6/25/01 3:05 PM Page 3

http://www.sybex.com

4

case MessageDlg (‘The document ‘ + filename + ‘ has changed.’ + #13#13 +
‘Do you want to save the changes?’, mtConfirmation, mbYesNoCancel, 0) of

idYes:
// call Save and return its result
Result := Save;

idNo:
// don’t save and continue
Result := True;

else // idCancel:
// don’t save and abort operation
Result := False;

end;
end;

NOTE In the MessageDlg call above, I’ve added explicit newline characters (#13) to improve the
readability of the output. As an alternative to using a numeric character constant, you can call
Chr(13).

To actually save the file, another function is invoked: Save. This method saves the file if it
already has a proper file name or asks the user to enter a name, calling the SaveAs functions.
These are two more internal functions, not directly connected with menu items:

function TFormRichNote.Save: Boolean;
begin
if Filename = ‘’ then
Result := SaveAs // ask for a file name

else
begin
RichEdit1.Lines.SaveToFile (FileName);
Modified := False;
Result := True;

end;
end;

function TFormRichNote.SaveAs: Boolean;
begin
SaveDialog1.FileName := Filename;
if SaveDialog1.Execute then
begin
Filename := SaveDialog1.FileName;
Save;
Caption := ‘RichNote - ‘ + Filename;
Result := True;

end
else
Result := False;

end;

The RichBar Example

2874CD2.qxd 6/25/01 3:05 PM Page 4

http://www.sybex.com

5

I use two functions to perform the Save and Save As operations for completeness, even if
the RichBar program has only a Save button and not a Save As button. The MdEdit version
in Chapter 8 offers this extra feature. Moreover, the Save button is enabled only if the file has
not been modified, as indicated in the SetModified method:

procedure TFormRichNote.SetModified(const Value: Boolean);
begin
FModified := Value;
tbtnSave.Enabled := Modified;

end;

Opening a file is much simpler. Before loading a new file, the program checks whether the
current file has changed, asking the user to save it with the SaveChanges function, as before.
The OpenExecute method is based on the OpenDialog component, another default dialog
box provided by Windows and supported by Delphi:

procedure TFormRichNote.OpenExecute(Sender: TObject);
begin
if not Modified or SaveChanges then
if OpenDialog1.Execute then
begin
Filename := OpenDialog1.FileName;
RichEdit1.Lines.LoadFromFile (FileName);
Modified := False;
Caption := ‘RichNote - ‘ + FileName;

end;
end;

The only other detail related to file operations is that both the OpenDialog and SaveDialog
components of the form have a particular value for their Filter and DefaultExt properties,
as you can see in the following fragment from the textual description of the form:

object OpenDialog1: TOpenDialog
DefaultExt = ‘rtf’
FileEditStyle = fsEdit
Filter = ‘Rich Text File (*.rtf)|*.rtf|Any file (*.*)|*.*’
Options = [ofHideReadOnly, ofPathMustExist,ofFileMustExist]

end

The string used for the Filter property contains four pairs of substrings, separated by the
| symbol. Each pair has a description of the type of file that will appear in the File Open or
File Save dialog box, and the filter to be applied to the files in the directory, such as *.RTF. To
set the filters in Delphi, you can simply invoke the editor of this property, which displays a
list with two columns.

The file-related methods above are also called from the FormCloseQuery method (the handler
of the OnCloseQuery event), which is called each time the user tries to close the form,

File Operations

2874CD2.qxd 6/25/01 3:05 PM Page 5

http://www.sybex.com

6

terminating the program. We can make this happen in various ways: by double-clicking the
system menu icon, by selecting the system menu’s Close command, by pressing Alt+F4, or by
calling the Close method in the code, as in the File ➢ Exit menu command.

In FormCloseQuery, you can decide whether to actually close the application by setting the
CanClose parameter, which is passed by reference. Again, if the current file has been modified,
we call the SaveChanges function and use its return value. Again we can use the short-circuit
evaluation technique:

procedure TFormRichNote.FormCloseQuery(Sender: TObject;
var CanClose: Boolean);

begin
CanClose := not Modified or SaveChanges;

end;

The last file-related command is the Print command. The RichEdit component includes
print capabilities, and they are very simple to use. Here is the code, which actually produces a
very nice printout:

procedure TFormRichNote.PrintExecute (Sender: TObject);
begin
RichEdit1.Print (FileName);

end;

Conclusion
As mentioned at the beginning, the file support provided by this example is rather complex.
This is something you’ll probably need to handle in any file-related application. As this was
too long for inclusion in the printed Mastering Delphi 6, I’ve decided to place it on the CD
instead of skipping it altogether. You can now get back to the book (mainly Chapters 7 and 8)
to see how the example can be extended in a number of different ways.

The RichBar Example

2874CD2.qxd 6/25/01 3:05 PM Page 6

http://www.sybex.com

	copyright: Copyright ©2001 SYBEX, Inc., Alameda, CA
	link:

