[Marco Cantu - Mastering Delphi 2006 Update] — www.marcocantu.com/md2005

INTRODUCTION

This short ebook covers the differences between Delphi 2005 and
Delphi 2006. It is meant as an update of the book “Mastering Borland
Delphi 2006”, written by Marco Cantu and published by Sybex (now an
imprint of Wiley).

Although you can read it by itself, there are frequent references to
the book, so you need the book at hand to fully benefit from it. In fact, I
avoided repeating material already in the book.

The updates in this ebook are organized by the printed book
chapter they refer to. The examples discussed here are available online
on www.marcocantu.com/md2005.

The Author

Marco Cantu is the author of the best-selling Mastering Delphi
book series and a prominent figure of the Delphi community. He's also
one of the recipients of the “Spirit of Delphi” award. Marco teaches and
consults on Delphi, but also in XML-related and Web technologies.

Marco's web site is on www . marcocantu.com and his blog on
blog.marcocantu.com. You can reach him at
marco.cantu@gmail.com. Marco lives in Italy, with his wife Lella
(an interior designer), their two kids Benedetta and Jacopo, and the dog
Lillo.

Copyright 2005-2006 Marco Cantu — All right reserved — Page 1

[Marco Cantu - Mastering Delphi 2006 Update] — www.marcocantu.com/md2005

CHAPTER 1: The DeLpHi 2006 IDE

The “2006” version of Delphi has the formal name of “Borland
Developer Studio 2006.” Borland has kept the product-specific names in
this release, but is likely to stop them in the future, to underline the fact
you are buying a multi-language studio IDE, and bring this in line with
Microsoft's offering. In this section we are focusing on the most relevant
new features of the IDE.

Delphil 2006 IDE is not as revolutionary as the previous version,
as it is based on the same architecture and has a very similar look-and-
feel. Borland has made a lot of effort to the the new version of the IDE
much more stable, as this was the most frequent complain user had for
Delphi 2005. But along with more stability and speed, Delphi 2006 IDE
adds a relevant number of new features.

Flexible Installation and
Execution

First of all, when you install Borland Developer Studio 2006 (or
BDS 2006) you can pick only some of the four personalities that are
available: Delphi for Win32, Delphi for .NET, C++Builder for Win32,
and C# (obviously for .NET).

Even in case you decide to install all of the personalities, you can
choose which one you want to activate when you start the IDE. A set of
related shortcuts are installed in the BDS 2006.

Starting only a personalities result in shorter startup time, less
memory usage, and a slightly faster IDE overall. Also, the IDE will be
less cluttered with options you don't case for, like in the File New menu.
Starting a single personality is supported by a new command line
shortcut of the BDS.EXE program, —p. For example, you can invoke the
Delphi for WIn32 personality with the —-pDelphi option. What is not
well known is that you can use the same shortcut to activate multiple
personalities at once, separating them with a comma. For example, a
Win32 developer might be interested in running both Delphi and
C++Builder, which can be done with —-pCBuilder, Delphi.

Copyright 2005-2006 Marco Cantu — All right reserved — Page 2

[Marco Cantu - Mastering Delphi 2006 Update] — www.marcocantu.com/md2005

This new option extends the features of the —r option discussed
in the section “Starting the IDE with Multiple Configurations” of
Chapter 1 (page 6) in “Mastering Borland Delphi 2005”.

[ODifferently from the -r flag, if you use -p any change
in the IDE configuration saved in the registry will be
available also as you start the full IDE or other
personalities. This is an advantage as you don't have
to apply the settings multiple times but also a
drawback, as you cannot use this option to install
experimental components and add-ins you don't want
around in your main development environment. In such
a case the -r option is still the way to go.

The IDE Look-and-Feel

Even if this doesn't really affect the IDE capabilities, it is
interesting to notice that the IDE has been updated in the way it looks,
with some rounded toolbars and tabs, as you can see here:

& Project3 - Borland Developer Studio 2006 - Unit3

File Edit Search Wiew Refactor Project Run Component Tools StarTeam Window

HED | NB-8l88 | aE k- PR
5’\ Structure 2 X ﬁWelcome Page @UnitS
0o

From my point of view the most relevant changes of the IDE are
those affecting my everyday work, that is the updates to the form
designer and to the source code editor.

The VCL Form Designer

As soon as you place a new controls on a VCL form, you'll
immediately see something new. The corners of the control and the
central portion of each side have a small light blue circle. These mark
the resize areas of the control: moving the mouse over them you can
resize it (like in the past).

Now if you place a second control in the form, you'll be able to
see a more relevant new feature, “Design Guidelines”. This is a visual
helper to properly align the controls on a form:

Copyright 2005-2006 Marco Cantu — All right reserved — Page 3

[Marco Cantu - Mastering Delphi 2006 Update] — www.marcocantu.com/md2005

Buttonl

Not only you can align the sides of a control with those of
another one, but you can even align the text baseline, as in the example
above. Controls automatically snap to the guidelines when they are close
to them. They also snap when they are at a given margin to the border of
the container control.

Another new feature is the “Form Positioner” in the bottom right
corner of the designer surface. There you can see, in small, the position
of the form on the screen, which is relevant if the form uses absolute
positioning. You can also use the Form Positioner to modify the Top
and Le ft properties of the form visually. This tool is relevant only
when you use the default embedded designer.

Delphi 2006 Editor

Compared to the form designer, the source code editor in Delphi
2006 has seen a higher number of new features. As soon as you open a
source code file you can notice that the line numbers on the side of the
source code file have changed. Instead of seeing the number of each and
every line, now you see only each tenth line, with an hyphen indicating
the intermediate lines (each fifth line), and a single dot for the others.
The only exception is the line with the edit cursor, which has the line
number displayed. Here is an example (the cursor is on line 17):

|| type
TForm3 = class (TForm)
Labell: TLshel;
Editl: TEdit:
Buttonl: TEButton:
procedure EuttonlClick(Sender: TChjesct):
private
{ Private declarations }
public |
{ Public declarations }
end;

var

Notice that the line numbers are not placed in the gutter with
breakpoints and bookmarks any more, but have their separate area. On
the side of the editor you can also notice some color lines. These mark
the source code lines modified after the last time the file was saved
(yellow line) or within the current editing session (green line).

Copyright 2005-2006 Marco Cantu — All right reserved — Page 4

[Marco Cantu - Mastering Delphi 2006 Update] — www.marcocantu.com/md2005

Beside these graphical elements, the most relevant changes in the
editor are related to the several code writing helpers, from Block
Completion to the new Live Templates, to the updated of the Code
Completion technology. What is relevant to notice is that most of these
new features are not activated using shortcut keys you have to learn, but
show up automatically as you type, being triggered by simple keys like
Enter, the Space Bar, or the Tab. Having new features embedded in
Code Completion (manually triggered by Ctrl+Space, but often
displayed automatically) is much better than having to invoke a specific
request, like you had to do with the old Code Templates pressing Ctrl+J
(a much less intuitive sequence).

Block Completion

The first new feature I want to cover is Block Completion. It
automates the writing of the closing element of many code blocks. The
most obvious example is the begin-end block. Simply type begin
and press Enter to see the corresponding end show up below it
(followed by a semicolon, unless the block is inside a i f-then-else
block). Block Completion helps you also with t ry blocks (adding
finally and end), case (adds end), repeat (adds until),
record and class (adds end).

Live (Code) Templates

While the Enter key triggers Block Completion, the Space and tab
keys activate the new Code Templates, now called Live Templates. For
example, if you type if followed by a space the statement will be
completed with the then portion and a suggestion related with the test
expression the user has to fill:

procedure TForm3.ButtonlClick(3ender: TObject):

conditional expression
| end; <tab> or <shift + tab> ko navigate

Code Templates account for the definition of complex and partial
blocks of code, which need the user intervention to complete them in
one of more locations. You can move around these locations with the
Tab key. For example, there are multiple templates for the try
statement. One of these is called “try finally (with Create/Free)” and
when it is triggered it generates code like this:

:= T.Create(Self);
try

Copyright 2005-2006 Marco Cantu — All right reserved — Page 5

[Marco Cantu - Mastering Delphi 2006 Update] — www.marcocantu.com/md2005

finally
.Free;
end;

What is nice is that the editor enters in SyncEdit mode on the
name of the variable, so that it is automatically repeated on the first line
and on the line with the Free call. After typing it, you can move to the
next editing location with the Tab key, to enter the name of the class you
want to call Create for. When you are done, press the Tab key again
and by exiting the Live Template this will invoke the add variable
refactoring to add the proper variable declaration at the beginning of the
code block (for a description of refactoring in the IDE see Chapter 11).

First, templates configured in manual mode are invoked wit the
Tab key, while automatic templates are triggered by the Space key.
Second, Code Templates can be listed, picked, and edited in the new
Template View (use the View » Templates menu item to show it):

Templates
[‘2} Mew Lr E i '? Filter
Mame 4 Description
=t Delphi Delphi L
i* paren-skar comment
1 brace comment
arrayc array declaration {constant)
arrayd array declaration (variable)
begin begin,..end;
case case statement
class class declaration (Full with section comments)
classc class declaration {with Create/Destroy overrides)
classd class declaration {no parts)
CreakeC TComponent descendant construckar
else else begin...end;
enum enumeration declaration
Far For {no begin/end)
Faorb Far loop
Farin Far in loop
Farr Far loop (reverse)
Funckion Function declaration
if if {no beginfend)
ifb if statement
ife if then {no beginfend) else {no begin/end)
ifeb if then else
procedure procedure declaration
reqion create of surround code with a region B
< >
9(5.; Object Inspectar | Templates

[LYou can also work directly on them by editing their
XML source code files available in the
Objrepos\code_templates\delphi subfolder of the
BDS\4.0 folder. From the IDE you can create a new
Code Template with the command File > New » Other
» Other Files » Code Template or from the Template
View.

Copyright 2005-2006 Marco Cantu — All right reserved — Page 6

[Marco Cantu - Mastering Delphi 2006 Update] — www.marcocantu.com/md2005

The Live Templates can also be used in Surround mode. The idea
is to place the initial and final portion of the template around the selected
code. For example, you can crate a new begin-end block, comment an
entire section of code, place a try-finally block around a code fragment,
wrap some code in a REGION, and so on. To use a Surround template
you have to select a block of code and use the entires in the Surround
submenu in the editor local menu.

The joint use of Block Completion, Live Code Templates, and
Surround templates can really change the way you write code in Delphi.
And, as I already mentioned, all of this without having to change the
way you work, as many of this helpers popup automatically.

Other Minor Editor Changes

There are some other nice but less relevant changes:

If you right click on a tab of the editor, you can use the new command
“Close all other pages”.

You middle-click (or click the mouse wheel) on a tab of the editor to
close it.

You can move from one method to the next one (or the previous one)
using the key combination Ctrl+Alt+Down Arrow and Ctrl+Alt+Up
Arrow. Ctrl+Alt+tHome and Ctrl+Alt+End bring you to the first and
last method. This is called Class Navigation. You can also restrict
moving within the current class by activating the Class Lock, press
Ctrl+Q and than L (keeping Ctrl pressed).

The UML Designer

The UML designer (that is, the Together designer embedded in
Delphi 2006) has been extended in a very relevant way comapred to the
2005 versions. In particular, it now features bi-directional /ive code
synchronization: you can edit the source code and see the diagram
reflect the changes right away, but you can also edit the diagram to
update the source code.

You can add methods, properties, fields, create new classes,
inherit new classes from existing ones, change the base class of an
existing class, implement interfaces, and more. Together in Delphi 2006
is a full-blown tool, not a cut-down version as in the past.

Copyright 2005-2006 Marco Cantu — All right reserved — Page 7

[Marco Cantu - Mastering Delphi 2006 Update] — www.marcocantu.com/md2005

This is why, beside class diagrams, you can also work on many
other UML diagrams: Use Case, Sequence, Collaboration, State Chart,
and more. Together has its own set of refactorings (see the update to
Chapter 11, later in this document), but features also support for design
patterns, and code navigation. You can use Together to generate
complete documentation for the project, to check the source code
consistency with audits, and to extract the project metrics. All this goes
well beyond what I can cover in this book update.

IDE's Database Management Tools

Compared to what I discussed in the corresponding section of the
book on Delphi 2005 (page 37), the integrated database management
tools of the Delphi 2006 IDE have been extended to support the
dbExpress technology, a much better solution for developers involved
with Win32 client/server applications. Here you can see an example of
the information available in this window:

Data Explorer (3]
130 dbExpress ~
+- @ De2
=@ INTERBASE
=% IBCONMECTION
= Tahles
+ COLNTRY
+-g CUSTOMER
+- DEPARTMENT
+ g5 EMPLOYEE
EMPLOVEE_PROJECT
+- JOE
+ g5 PROJECT
+- PROJ_DEPT_BUDGET
SALARY_HISTORY

BBHDBHLDHDHED

- SALES
+- By Views
+13 Procedurss
. @ MYsOL
+- [ORACLE »
4 b

Like for the BPD drivers, you can access metadata, perform free
query, copy database data, and the like. Further information in Chapter
14, which covers the dbExpress architecture.

A New Personality: C++

One of the relevant new features of Delphi 21006 (or better, of
Borland Developer Studio 2005) is that the Delphi and C# languages are
now complemented by the C++ language. There is a new version of the
Borland compiler for this language, a new version of the VCL library for
C++ (available in the past in C++Builder 6), new C++ specific libraries,
CORBA support, and much more. Compared to C++Builder 6, the IDE

Copyright 2005-2006 Marco Cantu — All right reserved — Page 8

[Marco Cantu - Mastering Delphi 2006 Update] — www.marcocantu.com/md2005

and the libraries have been largely extended. Notice, though, the the
C++ support is for Win32 only and not for the .NET architecture of for
other operating systems.

The Debugger in Delphi 2006

The IDE has a number of new features related with the debugger,
that I want to mention shortly considering that the book doesn't cover
debugging at all. First of all, Borland has reintroduced the “Remote
Debugger” for Win32 (like there was in Delphi 7 but not in Delphi
2005) which can now be used also for ASP.NET applications.

Another new feature is the object data navigation capability of
most debug views (including watches, inspector, and even the fly-by
evaluation hint). You can also sort modules in the Module view, do cut
and paste operations in the CPU View, and (the most intuitive feature of
all) let the editor automatically close all of the source code files opened
during a debugging section. This is one of my favorite features of the
entire Delphi 2006 IDE.

Copyright 2005-2006 Marco Cantu — All right reserved — Page 9

