
Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 21

Essential Delphi 8 for .NET
by Marco Cantù

(Free) Chapter 3:
The Delphi Language

Version 0.04 – July 13th, 2004

What you have in your hands in a free chapter (in a draft – or beta – version) of a book
tentatively titled “Essential Delphi 8 for .NET” written and copyrighted by Marco Cantù. At the
time of this writing it is likely the the entire book will be published only as an ebook (although
print-on-demand is still an option) until a new edition of Mastering Delphi gets printed.

Feel free to read, store for your use, print this file as you wish. The only thing you cannot do is
sell it, give it away at seminars you teach, and make any direct on indirect profit from it (unless
you get a specific permission from the author, of course). Don't distribute on the web, but refer
others to the book page on the author's web site.

While this chapter is freely available, the complete ebook will not be free, you'll need to pay for it
(unless I can line up enough sponsors to make it freely available for all).

Information about the book status, including new releases, how to pay for it, and how to
receive updates are on the book web site: http://www.marcocantu.com/d8ebook.

For questions and feedback rather than my email please use the “books” area of my own
newsgroups, described on http://www.marcocantu.com and available via web on
http://delphi.newswhat.com (you must create a free account at this newsgroup front-end site for
posting messages).

A few people helped me out suggesting corrections for this ebook. Among them Jim McKeeth did
a great job pointing out tens of grammar errors and suggesting many improvements on wording.
Thanks a lot!

Delphi 8 Workshop by Marco Cantù

Two days of fast-paced in-depth training on the new features of Delphi 8 available at my office
in Italy and at company locations worldwide. For topics covered and more information see:
http://www.marcocantu.com/development/d8workshop.htm.

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 22

Chapter 3: The Delphi Language in
Delphi 8 for .NET

he transition from Delphi 7 to Delphi 8 marks the most relevant set of changes Borland has
made to the Object Pascal (or Delphi) language probably since Delphi 1 came to light.
There are several reasons for this change, but the most relevant is certainly the need to

obtain a high degree of compatibility with the underlying architecture of .NET, which in turn
makes the Delphi language compatible with other .NET languages.

T
On one hand, obtaining full language-features compatibility with other .NET languages is critical
to be fully interoperable, so that programmers using other languages can use assemblies and
components written in Delphi while Delphi programmers have all of the features of the .NET
libraries immediately available. On the other hand, having an existing implementation (at the CIL
level) of a number of core language features has made Borland’s job of updating the language
somewhat easier (although this was more the theory than it has been the practice, according to
insiders).

Notice that I tend to use the terms Delphi Language and Object Pascal Language almost
interchangeably. For a number of years, the language of the Delphi IDE was officially called
Object Pascal by Borland. Starting with Delphi 7, the company formally announced the new
name for the language itself, to highlight the core ancestry of the tool with other, like the Kylix
for Linux (of which there is a Delphi version) and Borland’s .NET IDE, often indicated with the
codename “Galileo”, which has a Delphi and a C# personality.

This chapter is focused on the changes Borland has made to the language since Delphi 7, it is not
a complete exploration of the language itself. You’ll only find an introductory chapter that
summarizes the core features of the Delphi language, explaining why it is a good choice for .NET
development (and not only for .NET).

The Delphi Language: An Assessment
To put it shortly, the Delphi language is a modern OOP language based on the Pascal language
syntax. Its Pascal roots convey to Delphi a few relevant features:

Delphi code is quite verbose (for example you type begin instead of an open brace)
but this tends to make the code highly readable

 By spelling out your intentions more clearly (compared to the C-family of languages)
there are less chances the compiler will misunderstand your program, while at the
same time it is more likely you’ll receive an error or a warning message indicating your
code is not clear enough.

 The language is type safe, not only at the OOP level but even at the level of the base
types. Enumerations, characters, integers, sets, floating point numbers cannot be
freely mixed as they represent different types. Implicit type conversions are very
limited.

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 23

You can learn more about the key features of the base Pascal language (the non-OOP
subset of Delphi) by reading my free ebook Essential Pascal, available on
http://www.marcocantu.com/epascal.

Focusing on OOP features, Delphi provides a very modern language, much closer to C# and Java
than C++. In Delphi objects are invariably allocated on the heap, there is a single base class for
all of the classes you define, features like properties and interfaces are built into the language,
and RAD capabilities are based on the simple idea that components are classes.

Delphi actually did introduce some of features that were also ported to other languages. In
particular, Turbo Pascal and Delphi 1 chief architect was Anders Hejlsberg, who later moved to
Microsoft to become a key architect of the .NET framework and the C# language (his title at
Microsoft is something like “Distinguished Engineer and Chief C# Language Architect “). His
influence (and the Delphi influence) is clearly visible. When you consider this important fact then
it should come to no surprise that the Delphi language has been moved to .NET more easily than
most other languages (including VB and C++).

This also means that your OOP code maintains a high degree of compatibility from Delphi 7 for
Win32 to Delphi 8 for .NET. In fact, one of the advantages you have with Delphi is that you can
compile your code (often the same source code files) on different platforms: Win32, .NET and
(with more limitations) even Linux.

The other relevant thing to mentions is that although both traditional Delphi and its new .NET
incarnations lack some language features of C# or Java, it does provide many constructs not
found in those other languages. For example, Delphi for .NET is one of the few languages that
supports enumerated sets (a CLR feature that is not supported by VB.NET or C#.NET). I’ll cover
those features later in this chapter. First, I need to cover how the Delphi language adapts to .
NET.

Good Ol’ Units
One of the relevant differences between the Delphi language and the C# language is that the
latter is a pure OOP language, a term used to indicate that all the code must be inside methods,
rooting out global functions (or procedures). The Delphi language, instead, allows for both
programming paradigms, like C++.

Here I don’t want to enter a technical dispute whether a pure OOP language is any better than
an OOP language supporting procedural programming, but let me underline one fact. I certainly
do find quite awkward seeing libraries with classes not meant to be instantiated but used only to
access a plethora of class functions. In this case the classes are containers of global routines,
exactly like modules in advanced procedural languages.

Globals and the Fake Unit Class

Moving Delphi to .NET, Borland had to find a way to maintain the existing model with global
functions, procedures, and data. This effect is obtained by creating a “fake” class for each unit,
and adding global procedures and functions to it like they were class methods and global data
like it was class data. For example, the UnitTestDemo program has a unit with a single global
function, Foo:

unit Marco.Test;

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 24

interface
function Foo: string;
implementation
function Foo: string;
begin
 Result := 'foo';
end;
end.

By adding this function to a program, compiling it, and inspecting it with IL DASM, you can see
(in the figure below) that the Marco.Test unit has a Unit fake class with the Foo global function.

By looking at Foo, in fact, you’ll get the following signature, indicating this is a class method with
static keyword:

.method public static string Foo() cil managed

Units as Namespaces

The other relevant way in which units are used, is that they become namespaces. A Delphi
compiled assembly has as many namespaces as there are units in its source code. What’s brand
new (well, almost as this technically works also in Delphi 7) is that you can have units with long
names, using the dot notation. See for example the code of the unit Marco.Test a few paragraphs
above. To be consistent with the Delphi notation, the filename of such a unit is called
Marco.Test.pas.

Similarly, from Delphi code you can access CLR namespaces and namespaces defined by other
assemblies exactly as if they were native units, with the uses notation:

uses
 System.IO.Text, System.Web;

uses
 Marco.Test;

Notice that this can be confusing as the system namespaces contains large numbers of classes
while a single Delphi unit should be limited in size to remain manageable. Again technically a unit
defines a namespace so that the uses statements above are functionally equivalent. However I

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 25

wish Delphi for .NET had an option to “condense” multiple units in a single namespace. As far as
I know this feature is not available out of the box.

Regarding namespaces and units, it's important to notice that Delphi classic Win32 library units,
like SysUtils or Classes have been prefixed with the Borland.Vcl name. So in theory when porting
an existing project you should modify lines like:

uses
 Classes, SysUtils;

into

uses
 Borland.Vcl.Classes, Borland.Vcl.SysUtils;

However, Delphi 8 for .NET allows you to indicate a namespace search path (or a list of project
namespaces), like Borland.Vcl, so you can omit the first portion of the declaration and the
compiler will pick up the correct unit anyway. In practice you can add a list of namespace prefixes
in the Directories/Conditionals page of the Project Options dialog box (the same effect can be
obtained with the -ns compiler flag, like -nsBorland.Vcl). This approach eliminates the tedious use
of IFDEFs Delphi programmers had to deal with for VCL/CLX compatibility between Delphi and
Kylix, or the two libraries on Windows alone.

The “Non-Existing” Unit Aliases

The Delphi for .NET help file suggests the possibility of defining an alias for a unit having a long
name (apparently only Delphi internal units, not system namespaces) with a syntax like:

uses
 Marco.Components.FunSide.Labels as FunLabels;

Not only have I not been able to make this work, but R&D members have confirmed that the
documentation is wrong and this feature is in fact not available.

Unit Initialization and Class Constructors

In the context of how units are adapted to a pure OOP structure, a relevant change relates to the
initialization and finalization sections of a unit, which are “global” potions of code executed (in
Delphi for Win32) at the start and termination of a program in a deterministic order given by the
sequence of inclusion (uses statements).

In Delphi for .NET, units become fake classes and the initialization code becomes a class static
method (see later) that is invoked by the class constructor (see later, again). As class
constructors are automatically invoked by the CLR before each class is used, the resulting
behavior is similar to what we were used to. The only difference, which is very relevant, is that
there is no deterministic order of execution for the various class constructors in a program. That
is, the order of execution of the various initialization sections is not known and can change for
different executions of the program.

As an example consider this initialization section that sets a value for a global variable (that is,
global within a unit):

initialization
 startTime := Now;

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 26

Compiling this code adds to the unit class a static method with same name of the unit
(Marco.Test), which calls Borland.Vcl.SysUtils.Unit::Now and saves the result in the startTime
local variable, and a call to this method from the class constructor (.cctor), as the following IL
snippets show:

.method public static void Marco.Test() cil managed
{
 // Code size 7 (0x7)
 .maxstack 1
 .locals init ([0] valuetype [Borland.Delphi]
 Borland.Delphi.System.TDateTime startTime)
 IL_0000: call valuetype [Borland.Delphi]
 Borland.Delphi.System.TDateTime [Borland.VclRtl]
 Borland.Vcl.SysUtils.Unit::Now()
 IL_0005: stloc.0
 IL_0006: ret
} // end of method Unit::Marco.Test
.method private hidebysig specialname rtspecialname static
 void .cctor() cil managed
{
 // Code size 36 (0x24)
 .maxstack 1
 ... // more IL code omitted
 IL_001e: call void Marco.Test.Unit::Marco.Test()
 IL_0023: ret
} // end of method Unit::.cctor

Identifiers
With multiple languages and a single CLR, chances are that a reserved symbol of a language will
be legitimately used by programmers using another language. In the past, this would have made
it very hard to refer to that symbol from the code. Delphi 8 introduces a special symbol (&) you
can use as a prefix for any reserved word, to legitimately use it as an identifier. This is called a
“qualified identifier”.

To be more precise, the & allows you to access CLR defined symbols (or other symbols in
general, whenever they are defined), but won't allow you to declare identifiers within Delphi code
that violate Delphi's own syntax rules (“& is for access only, not declaration” as Borland says). For
example, you can use & when referring to the base class of a class, but not when defining the
name of a new class. I'd say, this makes a lot of sense.

The most classic example is the use of the Label class of the WinForms library. As the label word
is reserved in the Delphi language you can either use the full name space to it or prefix it with
the &. The following two declarations are identical:

 Label1: System.Windows.Forms.Label;
 Label2: &Label;

An issue that Delphi 8 doesn’t address is the use of Unicode (UTF8) identifiers that the CLR allows
and Delphi currently doesn’t support. R&D members have told they’ve looked into it with the
trouble being that a change to the string type of the identifier tables of the compiler could badly
affect the compiler performance, so we’ll have to wait for a future version to see this issue
tackled. By the way, the & symbol will also work for UTF8 characters in the future.

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 27

Base Data Types
Contrary to what happened in the past, when the Delphi language base data types had to
partially adapt to the underlying CPU (for example in relation to the handling of floating point
numbers), now the language must comply with the Common Type System specification indicated
in the CLR. Of course most of the base data types are still there and others have been built by
Borland on top of what’s available.

The CLR makes a clear distinction between two different families of data types, value types and
reference types:

Value types are allocated directly on the stack and when you copy or assign a value
type the system will make a complete copy of all of its data. Value types include the
primitive data types (integer and floating point numbers, characters, boolean values)
and records.

Reference types are allocated on the heap and garbage collected. Reference types
include anything else, from objects to strings, from dynamic arrays to class metadata.

Primitive Types

The .NET CLR defines quite a few “primitive types”, which are not natively mapped to objects but
a direct representation (not predefined, as it can change with the target CPU and operating
system version, for example on a 32biit or 64bit CPU). The CLR primitive types are mapped to
corresponding Delphi types, as the following table highlights.

Category Delphi Type CLR Type

Generic size Integer System.Int32

Cardinal (equals LongWord) System.UInt32

Signed ShortInt System.SByte

SmallInt System.Int16

Integer System.Int32

Int64 System.Int64

Unsigned Byte System.Byte

Word System.UInt16

LongWord System.UInt32

Floating point Single System.Single

Double System.Double

Extended Borland.Delphi.System.Extended

Comp (equals Int64, deprecated) System.Int64

Currency Borland.Delphi.System.Currency
(a record based on Decimal)

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 28

Category Delphi Type CLR Type

Decimal System.Decimal

Real (equals Double) System.Double

char Char System.Char

WideChar (equals Char) System.Char

boolean Boolean System.Boolean

ByteBool Borland.Delphi.System.ByteBool

WordBool Borland.Delphi.System.WordBool

LongBool Borland.Delphi.System.LongBool

What you can notice is that not all Delphi types have a CLR equivalent. You are recommended
not to use those types if you want your classes to be usable by other .NET languages and fully
CLS-compliant. Feel free to use them inside a program and for compatibility with existing Delphi
code, but whenever possible stick to the types with a direct CLR mapping.

If you don't trust me, the data here is taken from the output of the PrimitiveList program. The
program passes as parameters to the PrintDelphiType function a long list of Delphi types,
occasionally with a comment. The function uses Delphi's RTTI and the system reflection to print
out to the console the Delphi and CLR type names. Here is the relevant code:

procedure PrintDelphiType (tInfo: TTypeInfo;
 strComment: string = '');
begin
 write (tInfo.DelphiTypeName);
 write (' - ');
 write (tInfo.ToString);
 writeln (' ' + strComment);
end;
// snippet from main program
begin
 writeln ('');
 writeln ('generic size');
 PrintDelphiType (typeInfo (Integer));
 PrintDelphiType (typeInfo (Cardinal),
 'declared as Cardinal');
 writeln ('');
 writeln ('specific size: signed ');
 PrintDelphiType (typeInfo (ShortInt));
 PrintDelphiType (typeInfo (SmallInt));
 PrintDelphiType (typeInfo (LongInt));
 PrintDelphiType (typeInfo (Int64));

In the output of this program you'll be able to see the internal RTL name of the type for the
Delphi .NET compiler and for .NET runtime itself. Of course, you can extend a similar program to
explore how other native and custom data types are handled by the Delphi compiler.

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 29

The old Real48 types, representing six-byte floats and already deprecated in the last few
versions of Delphi, is not available any more. Not being directly mapped to a supported FPU
type of the Pentium-class CPUs, its implementation was slow in Delphi for Win32 and is not
part of the CLR. The Real type, instead, is directly mapped by the compiler to Double.

Boxing Primitive Types

Primitive types can be boxed into object wrappers to convert them into numbers:

var
 n1: Integer;
 o1: TObject;
begin
 n1 := 12;
 o1 := TObject (n1);

This is very handy in a number of cases, including the possibility of using object container classes
to hold primitive types along with objects. Boxing introduces the notion that an object reference
can host anything (including a primitive value) and gives you the ability to apply some of the
predefined methods of the base Object class (like the ToString method) to any value. For
example, this code won't make sense in Delphi 7 (even if the cast from an Integer to a TObject
would indeed compile, its effect would have been totally different: that is storing the numeric
value as the address of the object!):

var
 n1: Integer;
 str: string;
begin
 n1 := 12;
 str := TObject (n1).ToString;

Of course, one could argue that a pure object-oriented language should root out the use of
primitive types and make use of objects for everything (as Smalltalk, the father-of-all-OOP-
languages, does), but efficiency reasons demand to keep primitive types close to the system. As
a simple test, the BoxingDemo application saves the intermediary value of a computation in an
integer boxed in an object, with the time take to box and unbox it far exceeding the time taken
for the computation (which, in this extreme case, involves only adding numbers). Similarly, I’d
expect an IntToStr call to be much faster than boxing the value into an object and than applying
to ToString method to it.

The other operation demonstrated by the application is the definition of a list of objects accepting
boxed elements and based on Delphi own container classes:

var
 list: TObjectList;
 i: Integer;
begin
 list := TObjectList.Create;
 list.Add(TObject (100));
 list.Add(TObject ('hello'));
 list.Add (button3);

 for i := 0 to list.Count - 1 do
 begin
 Memo1.Lines.Add (list[i].ToString);

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 30

 end;
Running this code the program adds to the memo the following output:

100
hello
Button3 [Borland.Vcl.StdCtrls.TButton]

Delphi Specific Ordinal Types

Enumerators and sets are ordinal types of the Pascal language, commonly used in Delphi. The
idea of enumeration is not strictly part of the C language, which expresses a similar idea with the
use of a sequence of numeric constants, thus making the enumerated values equivalent to
numbers. A form of strictly-typed enumerators has been added to C# language and is part of the
CLR types system. This means that Delphi enumerations are mapped to a corresponding CLR
features, as you can see by inspecting compiled code.

For example, the definition of this enumeration from the Borland.Delphi.System unit:

 TTextLineBreakStyle = (tlbsLF, tlbsCRLF);
gets transformed in the following “compiled” definition (visible with ILDAMS), which looks like an
enumeration class (marked as sealed) that inherits from System.Enum and has a single value (a
short unsigned integer) and two literal constants:

[ENU] TTextLineBreakStyle
 .class public auto ansi sealed
 extends [mscorlib]System.Enum
 [STF] tlbsCRLF : public static literal valuetype
 Borland.Delphi.System.TTextLineBreakStyle
 [STF] tlbsLF : public static literal valuetype
 Borland.Delphi.System.TTextLineBreakStyle
 [FLD] value__ : public specialname rtspecialname unsigned int8

The Delphi set type, instead, is not commonly found in many other programming languages. This
is why the CLR has no clue about sets and why they are not CLS-compliant. Delphi for .NET
implementation of sets is based on the following declaration, plus some compiler magic:

type
 _TSet = Array of Byte;

[TODO: Add more on sets]

Records on Steroids
Another relevant family of value types is represented by structures in C# jargon, or records as
they are called in Delphi. Records have always been part of the language, but in this version they
gain a lot of new ground as records can now have methods associated with them (and even
operators, as we'll see later on in this chapter).

A record with methods is somewhat similar to a class: the most relevant difference (beside the
lack of inheritance and polymorphisms) is that record type variables use local memory (of the
stack frame they are declared onto or the object they are part of), are passed as parameters to
functions by value, making a copy, and have a “value copy” behavior on assignments. This
contrasts with class type variables that must be allocated on the dynamic memory heap, are

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 31

passed by references, and have a “reference copy” behavior on assignments (thus copying the
reference to the same object in memory).

For example, when you declare a record variable on the stack you can start using it right away,
without having to call its constructor. This means record variables are leaner (and more efficient)
on the memory manager and garbage collector than regular objects, as they do not participate in
the management of the dynamic memory. These are they key reasons for using records instead
of objects for small and simple data structures.

type
 TMyRecord = record
 private
 one: string;
 two: Integer;
 three: Char;
 public
 procedure Print;
 constructor Create (aString: string);
 procedure Init (aValue: Integer);
 end;

A record can also have a constructor, but the record constructors must have parameters (if you
try with Create(); you'll get the error message “Parameterless constructors not allowed on record
types”. This behavior is far from clear to me, as you still have to manually call the constructor,
optionally passing parameters to it (I mean it seems you cannot use the constructor as a type
conversion, something you can use the Implicit and Explicit operators for, as discussed later).
Here is a sample snippet:

var
 myrec: TMyRecord;
begin
 myrec := TMyRecord.Create ('hello');
 myrec.Print;

Unless there is another way to call a record constructor, for example to initialize a global variable
or a field, I'm far from sure why this constructor syntax has been added. Notice, in fact, that
using the plain syntax above doesn't affect the initialization portion of the CIL code. In this
respect, it seems a better idea to use a plain initialization method rather than a constructor to
assign multiple (initial) values to a record structure.

From Borland Object Pascal days, Delphi for .NET has left out the object type definition,
which predates Delphi as it was introduced in the days of Turbo Pascal with Objects.
The reason is that .NET provides extended records (with methods) that are value types and
sit on the stack or in the container type exactly like objects defined with the object keyword in
past versions of Delphi. This is another deprecated language feature that few Delphi
programmers use, so its absence should not constitute a big roadblock.

Delphi for .NET still allows you to define either a record or a packed record. The difference is
traditionally related to 16-bit or 32-bit alignment of the various fields, so that a byte followed by
an integer might end up taking up 32 bits even if only 8 are used. The reason is that accessing
the following integer value on the 32-bit boundary makes the code faster to execute.

In Delphi for .NET two syntaxes produce structures marked in the IL as auto (for a plain record)
or sequential (for a packed record). How this data ends up being mapped by the system is

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 32

probably an implementation specific feature of the CLR, so that different platforms can use
different approaches. This means it is not easy to figure out the effect of this optimization as in is
on Win32, but if you suspect it might help you can try to give the CLR a hint.

Records or Classes

Having classes in the language, someone might wonder what's the rationale for having also
records with methods. Beside the lack of many advanced features of classes, the key difference
between records and classes relates to the way they use memory.

The bytes needed for the storage of the fields of a record comes from local memory: (i) the stack
if the record variable is a local variable or (ii) the memory of the hosting data structure if the
record is inside another type (an array, another record, a class...). On the other hand, a class
variable or field is just a reference to the memory location where the class is held. This means
classes need a specific memory allocation, their data blocks participate in the memory
management (including the garbage collector), and they must eventually be disposed. Records
just sit there on their own, and cost much less to allocate, manage, and free.

Another relevant difference is in the way records are copied or passed as parameters. In both
cases the default is to make a full copy of the memory block representing the record. Of course,
you can use var or const record parameters to modify this default behavior. On the contrary
assigning or passing an object is invariably an operation on the references to the objects: It's the
reference that is copies or passed around.

To get an idea of the performance differences among using objects and records, I added to the
RecordsDemo example, already mentioned earlier, two units which are extremely similar but use
the two different approaches. The rather dumb code I've written uses a temporary record or
object inside a routine that is called a few million times. The greatest difference depends on the
weight of the actual algorithm (I had to remove the calls to random() I originally used as they
slowed down things too much) and the amount of data of the structures. The current result of
the RecordsDemo test on my computer gives a relative speed of 360ms for records against
540ms for classes. The difference is a savings of 180ms over 2 million memory allocations. This
means that in a computationally-intensive operation the difference is certainly noticable, while in
most other cases it will be almost unnoticeable.

So the difference from records to classes boils down to the fact you might save one line of code
of memory allocation, that you might still need to replace with a call to an initialization method.

Delphi New Predefined Records

The presence of a sophisticated record type definition and of the operators overloading has led
Borland to change a lot of predefined Delphi types turning them into records. Notable examples
are the types variant, datetime, and currency.

Variants in particular represent another data type not part of the CLR foundations that Borland
has been able to redefine on top of the available CLR features without affecting the syntax and
the semantic of the existing code. The implementation of variants on .NET differs heavily from
that of Win32, but your code (at least the higher level code) won’t be affected.

I'll cover these Borland predefined data types in Chapter 4, which is devoted to Delphi 8 RTL.

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 33

Considering the relevant changes on the variant data type it should come to no surprise that
the TVarData type has disappeared and the VarUtils unit is no longer present. Notice also that
in a few circumstances you'll need to add a reference to the Variants unit for some existing
Delphi programs to recompile under Delphi for .NET.

Reference Types
As mentioned earlier, the key different between value types and reference types is that
reference types are allocated on the heap and garbage collected. The class type is the most
obvious example of a reference type, but also strings and Objects are the most obvious examples
of a reference type, but strings and dynamic arrays are part of the same category as well (which
is not much different from what Delphi programmers were used to, a part from the garbage
collection support).

More details on the Garbage Collector were already in Chapter 1, while a discussion on how
this affects Delphi objects destruction will take place later in this chapter.

Strings
Considering that Delphi long strings are allocated on the heap, reference counted and use the
copy-on-write technique, .NET strings will be quite familiar. There are a few differences, though.
The first is that strings on .NET use UTF16 Unicode characters, that is each character is
represented with 16 bits of data (2 bytes). This is transparent, as when you index into a string
looking for a given character, the index will be that of the character, not that of the byte (the two
concepts are usually identical on Delphi for Win32). Of course, using UTF16 means that the
strings will use on average twice as much memory than in Delphi for Win32 (that is, unless you
used the widestring type on Win32).

As the array indexes refer to characters and not bytes, so the Length function returns the number
of characters, not the number of bytes. The effect is that you can keep scanning a string writing:

 for I := 1 to Length (str) do
 writeln (IntToStr (I) + ':' + str[I]);

If you want to know the actual size of a string you should use the expression:

Length(AString) * SizeOf(Char)
which doesn't take into account the trailing NULL character and other size information added to
the string by the system.

The PrimitiveList program tells us, again, that the available Delphi string types have the following
mappings to CLR types:

Category Delphi Type CLR Type

strings string System.String

AnsiChar Borland.Delphi.System.AnsiChar

ShortString Borland.Delphi.System.ShortString

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 34

Category Delphi Type CLR Type

AnsiString Borland.Delphi.System.AnsiString

WideString System.String

Another relevant issue is that strings in .NET are immutable. This means that string
concatenation is slow when done with the classic + sign (and the already obsolete AppendStr
routine is now gone). In fact, a new string has to be created in memory copying the contents of
the two strings being added, even if the effective result is adding some more characters to one of
the strings. To overcome this slow implementation, the .NET framework provides a specific class
for string concatenation, called StringBuilder.

[TODO: what about Concat?]

For example, if you have a procedure like PlainStringConcat below that creates a string with the
first 20,000 numbers, you should rather re-implement it using a StringBuilder object like in the
following UseStringBuilder function:

function PlainStringConcat: Integer;
var
 str: string;
 i, ms: Integer;
 t: tDateTime;
begin
 t := Now;
 str := '';
 for I := 1 to 20000 do
 begin
 str := str + IntToStr (i) + ' - ';
 end;
 ms := trunc (MilliSecondSpan(Now, t));
 writeln (str[100]);
 Result := ms;
end;
function UseStringBuilder: Integer;
var
 st: StringBuilder;
 str: string;
 i, ms: Integer;
 t: tDateTime;
begin
 t := Now;
 st := StringBuilder.Create;
 for I := 1 to 20000 do
 begin
 st.Append (IntToStr (i) + ' - ');
 end;
 str := st.ToString;
 ms := trunc (MilliSecondSpan(Now, t));
 writeln (str[100]);
 Result := ms;
end;

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 35

If you run the StringConcatSpeed demo that includes the two functions above (plus a third based
on Delphi's TStringList class) you'll see the time taken by each of the two approaches, and the
difference will be striking! This is the output (you should try out with different ranges of the for
loop counter):

String builder: 19
Plain concat: 10235

This means that the string builder takes a few milliseconds while the string concatenation takes
about 10 seconds. The morale of this story is that you have to get rid of all of the lengthy string
concatenations in your code using either a StringBuilder or TStringList. The TStringList is a little
slower (takes almost twice as much as the StringBuilder, which seems acceptable for most tasks)
but has the advantage of maintaining your code compatible with Delphi 7. You can certainly
obtain the same compatibility by writing a StringBuilder class for Delphi 7, but using a string list
seems a better approach to me if you need backward compatibility.

[TODO: short strings performance test]

[TODO: cover dynamic arrays shortly?]

[TODO: using a const parameter when passing strings in Delphi 8: is it still worth as in Delphi 7?
No, apparently in Delphi 8 using const makes no difference at all, which is reasonable as strings
are immutable and need no reference counting (which is skipped in Delphi 7 by using const string
parameters)]

In the .NET FCL (and as a consequence also in Delphi's RTL) every object has a string
representation, available by calling the ToString virtual method. System library classes
already define a string representation, while you can plug in your own code for your custom
classes. This is covered in more details and with an example in Chapter 4, focusing on the
RTL.

Using Unsafe Types
In Delphi for .NET the use of pointers and other unsafe types is not totally ruled out. However,
you'll need to mark the code as unsafe and go into a lot of trouble to obtain something you could
easily and better achieve on the Win32 platform. In other words, although I'm going to show you
a few tricks in this section, I'm not recommending at all the use of these techniques, quite the
contrary I'd rather discourage you from using them, unless you really need to do so!

A second disclaimer, at least for now, is that these features are mostly undocumented and I'm
having a hard time figuring out how to make them work, so this section is still mostly
incomplete and is just a description of some hardly working experiments.

As a general rule, notice that you can ask the Delphi for .NET compiler to permit the generation
of unsafe code with the directive:

{$UNSAFECODE ON}
After you've used this directive you can mark global routines or methods with the unsafe
directive. The application you'll produce will be a legitimate .NET application, possibly managed,
but certainly not safe. Running it through PEVerify should fail.

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 36

[TODO: Add an aside about PEVerify and what a failure means]

When declaring an unsafe method, you mark the method with this directive in the method
definition of the implementation section, not in the method declaration (within the class
definition) of the interface section. Unless the method takes unsafe types as parameters, in
which case the unsafe directive goes in the method declaration.

[TODO: sample code showing the syntax and then a short paragraph explaining it.]

Variant Records

Let's start with variant records. These are data structure with fields that can assume different
data types either depending on a given field (as in the example below, taken from the UnsafeTest
project) or in an undetermined way:

type
 TFlexi = record
 public
 value: integer;
 case test: Boolean of
 true: (c1: Char; c2: Char);
 false: (n: Integer);
 end;

If you compile this code the compiler issues the warning “Unsafe type TFlexi”, which is certainly
correct. Anyway, you can use it in a method like the following, which saves data using a format
(the 'a' and 'b' characters) and retrieves it with another (the 6,422,625 number):

procedure UseVariantRecord;
var
 flexi: TFlexi;
begin
 writeln ('using variant record');
 flexi.test := true;
 flexi.c1 := 'a';
 flexi.c2 := 'b';
 flexi.test := false;
 writeln (IntToStr (flexi.n));
end;

Notice that this works even without marking the procedure unsafe or marking the module as
such. The most relevant rule for variant records in Delphi 8 for .NET is that you cannot use
reference types (managed data) in the overlapping portion of the type. So if you try the following
data structure:

type
 TFlexi2 = record
 public
 value: integer;
 case test: Boolean of
 true: (s: string);
 false: (n: Integer);
 end;

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 37

as soon as you try to use a local variable of this type, at runtime you'll get a CLR exception like:
“Could not load type UnsafeTest.TFlexi2 from assembly UnsafeTest (...) because it contains an
object field at offset 5 that is incorrectly aligned or overlapped by a non-object field”.

Untyped Parameters

Another risky technique is the use of untyped parameters in procedures. Here is an example
(again from the UnsafeTest project) that works:

procedure UnsafeParam (var param);
begin
 writeln (tObject(param).ToString);
end;
var
 test: string;
 n: Integer;
 obj: TObject;
begin
 test := 'foo';
 UnsafeParam (test);
 n := 23;
 UnsafeParam (n);
 obj := TObject.Create;
 UnsafeParam (obj);

In this case you'll get the output you'd expect (and no compile time warning or runtime error):

foo
23
System.Object

before you get too surprise by this behavior, notice that the compiler generates a method with
the following signature, which has an object passed by reference (& in C is like var in Pascal),
which means the compiler uses objects and boxing to simulate an undefined type:

.method public static void UnsafeParam(object& param) cil
managed

Allocating Memory with New

Finally, you cannot use GetMem, FreeMem, ReallocMem any more. They have been removed
from the standard routines. You can still use New (someone says also Dispose, but I wasn't able
to find it) but only when allocating a dynamic array. In fact if you try to use New in another
context, you'll get the compiler error message “NEW standard function expects a dynamic array
type identifier”. Here is an example (again from the UnsafeTest project) of this usage:

type
 arrayofchar = array of Char;
var
 ptest2: arrayofchar;
begin
 ptest2 := New (arrayofchar, 100);

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 38

Using the PChar type

Another issue relates to the use of PChar pointers. If you simply try using the PChar type, the
compiler will stop with an error indicating that: “Unsafe pointer variables, parameters or consts
only allowed in unsafe procedure”. This is solved by using the unsafe directive to mark the
procedure or method.

But the actual question is, what exactly can you do with a PChar? I don't know for sure, but my
impression is that you can do very little. This is an example (again in the UnsafeTest project),
which basically takes uses a PChar to refer to a character in the array declared above and modify
it:

procedure testpchar; unsafe;
var
 ptest: PChar;
begin
 ptest := @ptest2 [5];
 ptest^ := 'd';
 writeln (ptest2 [5]);
end;

The code does work as expected, but it is hard to tell why one might want to use it rather than
accessing the dynamic array directly.

A related technique is the use of the GCHandle class of .NET, a sort of parent of the Object class,
which allows you to “pin down” an object and get a pointer to its memory location to work with,
while the CLR guarantees that the object won't be moved in memory (for example, as a result of
a garbage collection). There is some code introducing this technique in the UnsafeTest project,
but nothing really interesting for now.

[TODO: Finish exploring the topic here or delay coverage of GCHandle and pointers to the RTL
chapter.]

The file of Type is Gone

Very few of the traditional Pascal and Delphi types are missing in Delphi for .NET. A notable
absence, albeit seldom used, is the file of <type> construct of the traditional Pascal language.

Type Casts On the Safe Side
The Delphi language tends to force the developers to use the type system in an appropriate way.
By treating the base data types as different entities (if you compare it, for example, with the C
language) programs tends to be better written and more readable. For example, an enumeration
is not the same as an integer, an integer is not type-compatible with a character, and so on.

Still the Delphi language allows you to code a direct type cast, imposing your own rule on top of
what the compiler generally allows you to do. When there is direct cast, the Delphi compiler for
Win32 gives up. So you can cast an object into an object of another type, cast an object
reference to an integer (holding the address of the memory location of the object, not the
object's data), and the like. These are unsuggested and unsafe practices, but they are somewhat
frequent in Delphi.

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 39

As .NET CLR has a high regard for type safety (a precondition for having a safe application) some
of the direct type cast capabilities we are used to don't apply any more, or apply in a different
way. The first example is when you cast an object to a class type different than its own. While in
Delphi 7 the cast was always allowed (optionally ending up with a nonsense piece of code),
Delphi 8 for .NET treats any cast among class types like they were done with the as operator.
This means that any cast among classes is checked for type compatibility, with the rule that an
object of an inherited class is compatible with each of its base class types.

Safe casts are slower than direct casts, but are certainly safer. Where Delphi for .NET has a
syntax to express the two types of casts, they are both converted into safe code (the as cast):

anotherObject := TAnotherClass (anObject); // safe direct cast
anotherObject := anObject as TAnotherClass; // safe as cast

[Note: Added to this revision of the chapter] If these two lines both perform a safe cast, their
effect is actually different! In case of failure the direct cast sets the result to nil, whereas the as
cast raises an exception. You can test this different behavior by running the AsAndCast demo
program, which has the following code snippet:

 mem := TMemoryStream.Create;
 str := TStringStream.Create;
 try
 // str := mem as TStringStream;
 str := TStringStream (mem); // line 1
 writeln ('no exception'); // line 2
 except
 writeln ('error');
 end;
 if Assigned (str) then
 writeln ('assigned')
 else
 writeln ('not assigned');

Comment either one of the two casts (in the lines marked 'line 1' and 'line 2') and run the
program to see the relevant difference.

There is only an exception to the automatic use of safe casts, which is the case the compiler
spots the use of the protected hack , as discussed later in a specific section on this technique.

A totally different case is the cast of a primitive type (let's say an integer) to a class type. Instead
of a cast involving the value of the reference (as on Win32), you end up with the boxing of the
native value:

anObject := TObject (aNumber);
Thus you obtain an actual object (not just a fake reference), which is a new object containing the
value you are casting. This value can be cast back to the original native type, with a notation like:

aNumber := Integer (anObject);
As this is a controlled cast, casting to integer a regular object (not a boxed integer) will cause an
error. This breaks the existing Delphi code, which formally allows you to cast any object to an
integer to extract the value of the reference. Of course, this was not a good way to write code in
the first place, so you shouldn't really complain!

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 40

I won't even touch on the idea of casting object references to pointers and possibly even
manipulating those pointers, as almost none of the pointer operations are allowed in a safe and
managed .NET application.

Finally, notice that you can define custom type casts, or custom data type conversions, with the
Implicit and Explicit operators (see later in the section devoted to Operator Overloading).

Classes Gain New Ground
To fully support the class model of the CLR, Borland had to tweak the Delphi language in a few
ways, including making changes to classes. With most of the traditional features of classes left
unchanged, there are few relevant new features. The most notables are the definition of visibility
rules more on line with other languages, the support for nested types, and concept of class
helpers.

When Private is Really Private

Differently from most other OOP languages, Delphi had a more relaxed rule for private visibility.
In fact, access specifiers where enforced only across units and not for classes within the same
unit. In other words, a class could access to private fields and methods of another class defined
in the same unit. The same happened with protected members.

The first important thing to consider is that to maintain source code compatibility the behavior of
the private and protected keywords has not changed. This means your existing code taking
advantage of this feature will keep working. The only change is that protected symbols defined in
another unit are accessible only within the same assembly/package, but not across package
boundary (as they used to be in Delphi 7).

For CLR compatibility, Borland has added two more access specifiers, strict private and strict
protected. These correspond to the CLR private and protected specifiers and behave like you’d
expect, which means other classes within the same unit cannot access strict private symbols of a
class and can access strict protected symbols only if they inherit from that class.

As an example of the syntax and error messages you’ll get see the ProtectedPrivate demo in this
chapter’s code. The demo has a couple of classes and code using them, and you can experiment
with it by changing the access specifiers. The base class code is the following (listed here only to
show the exact syntax):

type
 TBase = class
 strict private
 one: Integer;
 strict protected
 two: integer;
 end;

There are a couple of things to notice. The first is that the error message you’ll get when you try
to access a non-visible member is quite readable (“Cannot access protected symbol TBase.two”)
while in the past it used to be very cryptic (“Undeclared identifier”). The second important
element is that the syntax of this feature has changed since the original Delphi for .NET preview
distributed with Delphi 7. The preliminary syntax was class private, now replaced with strict
private.

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 41

To summarize, the following table lists correspondences between Delphi and the CLR. Notice that
Delphi’s protected access specifier is mapped to CLR assembly access specifier. In other words,
Delphi protected specifier works as usual within an assembly, but reverts to strict protected
across assembly boundaries.

Delphi CLR

private assembly

strict private private

protected famorassem (family or assembly)

strict protected family

public public

published public

The Protected Hack Still Works!

Longtime Delphi programmer’s certainly know that there is a trick allowing you to access to any
protected data of another class, even if this class is declared in a different unit. This trick, often
called the protected hack is described as follows in Mastering Delphi 7.

[TODO: add text here from MD7, use special formatting]

In Delphi for .NET the protected keyword has kept the same meaning, but one of the key
element of the protected hack is the ability to cast another of a class to its fake subclass,
something the CLR won’t allow you to do (see the section “Cast on the Safe Side” above).
However, in case the compiler recognizes you are using the protected hack (that is, when it
notices a weird typecast to an empty subclass to access a protected member) it ignores the cast
but lets you access the protected member anyway.

This is demonstrated by the ProtectedHack demo, which has a class with a protected member:

type
 TTest = class
 protected
 ProtectedData: Integer;
 public
 PublicData: Integer;
 function GetValue: string;
 end;

The main form uses the protected hack to access to the data, as follows:

type
 TFake = class (TTest);
procedure TForm1.Button2Click(Sender: TObject);
var
 Obj: TTest;
begin
 Obj := TTest.Create;
 Obj.PublicData := 10;

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 42

 TFake(Obj).ProtectedData := 20;
 ShowMessage (Obj.GetValue);

The generated IL code (in the following listing) shows that the compiler skips the type cast and
produces the same code for the access to the public and protected data:

.method public instance void Button2Click(object Sender)
 cil managed
{
 // Code size 40 (0x28)
 .maxstack 2
 .locals init ([0] class TestClass.TTest Obj)
 IL_0000: newobj instance void TestClass.TTest::.ctor()
 IL_0005: stloc.0
 IL_0006: ldloc.0
 IL_0007: ldc.i4.s 10
 IL_0009: stfld int32 TestClass.TTest::PublicData
 IL_000e: ldloc.0
 IL_000f: ldc.i4.s 20
 IL_0011: stfld int32 TestClass.TTest::ProtectedData
 IL_0016: ldloc.0
 IL_0017: call instance string
 TestClass.TTest::GetValue()
 IL_001c: call void
 Borland.Vcl.Dialogs.Unit::ShowMessage(string)
 IL_0021: ldloc.0
 IL_0022: call instance void TestClass.TTest::Free()
 IL_0027: ret
} // end of method TForm1::Button2Click

The only limitation is that, according to the rules mentioned in the previous section, the use of
the protected hack is limited only within a single assembly. If the unit that defines the base class
is contained by a different assembly the code will not work.

Class Data and Statics Class Methods

Delphi has always allowed the declaration of class methods, that is methods not bound to a
specific object but to a class as a whole. By the way, not all Delphi programmers know that
within class methods you can indeed use the self keyword, but that refers to the class itself, not
an instance as it happens with regular methods.

A long-awaited feature of the Delphi language relates to the introduction of class data, that is
data shared among all objects of the class. It was possible to simulate this construct in past
versions of Delphi by using global variables hidden in the implementation section of a unit, but
this is far form a neat way of writing the code and could cause troubles in case of derived
classes. The introduction of class data adds to Delphi a feature that most other OOP languages
share. How do you declare class data? Simply by pre-pending the class var keywords combination
to the declaration:

type
 TMyData = class
 private
 class var
 CommonCount: Integer;
 public
 class procedure GetCommon: Integer;

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 43

Actually class var introduces a block of one or more declarations. Beside declaring class data, you
can also define class properties and static class procedures. Class static methods have been
introduced for compatibility to the CLS, as Delphi code could use class methods to express a very
similar concept. As there are relevant implementation differences Borland decided to have two
separate features in the language. The differences are that class static methods have no
references to their own class (no self referring to the class itself), and cannot be virtual. On the
positive side, they can be used to define class properties.

Here is some sample code to highlight the syntax, taken from the ClassStatic example:

type
 TBase = class
 private
 class var
 fMyName: string;
 public
 class procedure One;
 class procedure Two; static;
 class function GetMyName: string; static;
 class procedure SetMyName (Value: string); static;
 class property MyName: string
 read GetMyName write SetMyName;
 end;

Class properties in .NET are properties mapped to class static methods, but in Delphi you can also
map them to class data (with the compiler automatically generating the missing method as it
happens with plain properties), like in:

 class property MyName: string
 read FMyName write SetMyName;

This second declaration is mapped to the following CLS compliant metadata:

.property instance string MyName()
{
 .custom instance void [System]
 System.ComponentModel.BrowsableAttribute::.ctor(bool) =
 (01 00 00 00 00)
 .set void ClassStatic.TBase::set_MyName(string)
 .get string ClassStatic.TBase::get_MyName()
} // end of property TBase::MyName

Class Constructors

Beside standard constructors used to allocate an object of a class and optionally initialize its data,
.NET introduces the idea of a class constructor, a sort of class static method called automatically
by the CLR to initialize a class. In fact, the class constructor executes before the class is
referenced or used in the program.

A class can have only one class constructor, declared as strict private:

type
 TMyTestClass = class
 strict private
 class constructor Create;

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 44

The effect of this code, seen with ILDAMS, is a special method called .cctor (class constructor, as
apposed to plain constructors internally called .ctor), as the following IL declaration shows:

.method private specialname rtspecialname static
 void .cctor() cil managed

As mentioned earlier (in the section about units) the class constructors in .NET can be considered
as a replacement for Delphi initialization sections, and are generated by the Delphi compiler for
the fake unit class when an initialization section is used.

Again, as mentioned, the key difference is that the sequence of call of the various class
constructors within a program is non-deterministic, so you cannot rely on a class constructor
being called before another one gets executed. If you have similar dependencies you'll have to
move them off to initial code of the project itself or some other global place in which you can
control the sequence of execution. At times, though, since class constructors are guaranteed to
be called before a class is used, you can fine tune your existing code to guarantee that the
sequence you are looking for is followed. For example, is an initialization section uses a class
from another unit you know that the class constructor of that other unit is executed first.

[TODO: test this last behavior with a demo]

[TODO: cover what happens when a new class constructor is declared in a descendant class]

Sealed Classes and Final Methods

In short, sealed classes are classes you cannot further inherit from, while final methods are
virtual methods you cannot further override in inherited classes. This is the syntax of a sealed
class (taken from the SealedAndFinal example):

type
 TDeriv1 = class sealed (TBase)
 procedure A; override;
 end;

Trying to inherit form it causes the error: "Cannot extend sealed class TDeriv1". This is the syntax
of a final method:

type
 TDeriv1 = class (TBase)
 procedure A; override; final;
 end;

Inheriting from this class and overriding the A method causes the compiler error: “Cannot
override a final method”.

Now, again we can ask ourselves what is the rationale behind these related concepts. It seems
that the more relevant issue is protection. You might want to disallow others from inheriting from
your classes in general, and in particular you'll want to disallow others from inheriting from
security/cryptography classes and possibly hamper them. However, by looking at Microsoft's class
library for .NET (the FCL) it seems there are too many sealed classes and too many virtual
methods short-cutted with final.

By looking at the .NET literature you'll see references to the fact that a virtual final class can be
made very efficient by the system, as it basically boils down to a (slightly faster) non virtual call.
This is the same reason behind the same features offered by the Java language. However, in
Java this efficiency consideration makes perfect sense as all methods are virtual by default. In C#

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 45

or Delphi, instead, you can write plain (non-virtual) methods, which seems a better idea than
declaring a virtual method and disabling its key capability.

[TODO: somewhere cover potential issues with final/sealed and class helpers]

Nested Types and Nested Constants

Delphi traditionally allows you to declare new classes in the interface section of a unit, allowing
other units of the program to references them, or in the implementation section, where they are
accessible only from methods of other classes of the same unit. Delphi for .NET adds another
possibility, namely the declaration of a class within another class. As any other member of the
class, the nested class can have a restricted visibility (say, private or protected).

As an example, consider the following declaration (extracted form the NestedClass unit of the
NestedTypes demo):

type
 TOne = class
 // nested constant
 const foo = 12;
 // nested type
 type TInside = class
 {type TInsideInside = class
 end;}
 public
 procedure InsideHello;
 private
 Msg: string;
 end;
 public
 procedure Hello;
 end;
procedure TOne.Hello;
var
 ins: TInside;
begin
 ins := TInside.Create;
 ins.InsideHello;
 writeln ('constant is ' + IntToStr (foo));
end;
procedure TOne.TInside.InsideHello;
begin
 writeln ('internal call');
end;

In the listing above you can notice a few things. First, the nested class can be used directly within
the class. Second, the same syntax allows you to define a nested constant, a constant value
associated with the class (again usable only internally if private or from the rest of the program if
public). Third, the definition of the method of the nested class uses the full name of the class, in
this case TOne.TInside.

At first sight it is far from clear how you would benefit from using a nested class in the Delphi
language. The concept is commonly used in Java to implement event handlers, and makes sense
in C# where you cannot have a class inside a unit. If it is important to have this feature in the

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 46

language for compatibility with the .NET world, I'm not sure if your code design could benefit
from their usage.

As a final note consider that you can declare a field of the nested class right after you've declared
the nested class (see the complete code of the NestedClass demo for an example).

Class Helpers

When Borland started working on Delphi for .NET, one the problems that surfaced was the need
to somewhat reconcile Delphi's own base classes (like TObject, Exception) with the corresponding
classes of the .NET Framework. After some research, they came out with a somewhat astonishing
trick called class helpers. A class helper is nothing but a way to pretend that some methods and
properties are part of a class you have no power to modify, while in fact they are hosted by a
different class. In other words, you can add a special class, the helper, that adds methods to an
existing one (methods or class data only, but no instance data). This way you’ll be able to apply
the new method to an object of that other class, even if that class has no clue about the
existence of the method.

If this is not clear, and it is probably not, let’s look at an example (taken from the
ClassHelperDemo project):

type
 TMyObject = class
 private
 Value: Integer;
 Text: string;
 public
 procedure Increase;
 end;
 TMyObjectHelper = class helper for TMyObject
 public
 procedure Show;
 end;

The code above declares a class and a helper for this class. This means that on an object of type
TMyObject you can call the method(s) of the class but also each of the methods of the class
helper:

 Obj := TMyObject.Create;
 Obj.Text := 'foo';
 Obj.Show;

The helper method becomes part of the class and can use self as any other method to refer to
the current object (of the class it helps, as class helpers are not instantiated), as this code
demonstrates:

procedure TMyObjectHelper.Show;
begin
 WriteLn (Text + ' ' + IntToStr (Value) + ' -- ' +
 self.ClassType.ClassName + ' -- ' + ToString);
end;

Finally notice that a helper method can “override” the original method. In the code I've added a
Show method both to the class and to the helper, but only the one of the helper gets called!

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 47

Of course, it makes very little sense to declare a class and an extension to the same class using
the class helper syntax in the same unit or even in the same program. What can be interesting,
instead, is the ability to extend a class defined in an external assembly (and possibly even written
in another language). Borland itself uses class helpers heavily in Delphi's RTL to extend
standard .NET classes and integrate with .NET RTL support.

For example, Delphi traditional TObject class has a ClassName method. In Delphi for .NET
TObject is an alias of System.Object, which would prevent you from calling the ClassName
method on your objects. However, by defining a class helper for the TObject class, Delphi makes
it possible to you to call ClassName on any .NET objects, even those not originating in Delphi
itself. This is the code you can find in System.pas:

 TObjectHelper = class helper for TObject
 public
 procedure Free;
 function ClassType: TClass;
 class function ClassName: string;
 class function ClassNameIs(const Name: string): Boolean;
 class function ClassParent: TClass;
 class function ClassInfo: System.Type;
 class function InheritsFrom(AClass: TClass): Boolean;
 class function MethodAddress
 (const AName: string): TMethodCode;
 class function MethodName(ACode: TMethodCode): string;
 function FieldAddress(const AName: string): TObject;
 procedure Dispatch(var Message);
 end;

(More details about TObjectHelper implementation in Chapter 4, which covers Delphi RTL.) Given
this declaration, not only you can call the helper methods on any object of classes you compile
with Delphi, but also to any object written in any language and created by assemblies you hook
to your code. This includes containers and contained objects, WinForms and ASP.NET controls
and just about any object in the system.

Just in case you are thinking of mimicking this behavior in another language, consider that (as
far as I know) Borland has filed for patents on the class helper technology.

According to Delphi’s R&D members, the core rule is that class helpers should be used to bind the
core classes of the library to new platforms while maintaining compatibility with existing code.
Class helpers should not be used as a general language construct for developing applications or
components. However, it happens that not only RTL libraries but also the higher level ECO
framework uses class helper extensively.

There are a few more rules that apply to class helpers. Class helpers methods can have different
access specifiers, class methods, virtual methods (which can be overridden – the compiler adds
an interface behind the scenes), extra constructors, class variables, properties, class operators .
The only features they lack is instance data.

Properties

Properties in Delphi for .NET maintain the core features whey used to have since Delphi 1. The
only relevant difference is in how they are translated to .NET code and how you can use them
from other .NET languages. In fact in the CLS properties must be mapped to getter and setter

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 48

methods and not directly to fields, as in Delphi. For this reason the Delphi for .NET compiler
creates the methods for you if your code maps the properties directly to data, but also maps the
properties to the proper methods if you use non-complaint property names.

The following is a sample class with two properties. The first property (One) was completed
automatically by the Delphi editor after writing the declaration property One: string and typing
Ctrl-Shift+C. In this case Delphi for .NET uses the set_One method name instead of the
traditional Delphi name SetOne. The second property was written manually with a getter and a
setter method (again generated by class completion). Here is the class code (from the
PropertyDemo example):

type
 TMyClass = class
 public
 FOne, FTwo: &string;
 procedure set_One(const Value: &string);
 function GetTwo: string;
 procedure SetTwo(const Value: &string);
 public
 property One: string read FOne write set_One;
 published
 property Two: string read GetTwo write SetTwo;
 end;

Notice that Delphi erroneously prefixes the string type name with an & (in the declaration and
parameters). Although string is a reserved word it can be legitimately used in these contexts, as
it happens to be a type name! I find this behavior of the editor quite annoying as the code is far
less readable with the extra &s (although both versions do compile).

If we now compile this code and inspect it with ILDASM we can find out a couple of interesting
things. First the property One is mapped to two methods, one we have written in the code and
the other generated by the compiler:

.property instance string One()
{
 .custom instance void [System]
 System.ComponentModel.BrowsableAttribute::.ctor(bool) =
 (01 00 00 00 00)
 .get instance string PropertyDemo.TMyClass::get_One()
 .set instance void PropertyDemo.TMyClass::set_One(string)
} // end of property TMyClass::One

Now let's look at the method synthetized by the compiler, which is almost identical to one
generated by hand:

.method public hidebysig specialname instance string
 get_One() cil managed
{
 // Code size 9 (0x9)
 .maxstack 1
 .locals init ([0] string Result)
 IL_0000: ldarg.0
 IL_0001: ldfld string PropertyDemo.TMyClass::FOne
 IL_0006: stloc.0
 IL_0007: ldloc.0
 IL_0008: ret
} // end of method TMyClass::get_One

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 49

Now let's look a the second property. A first difference is that the BrowsableAttribute is set to
true as an effect of the published declaration (more on this as we discuss attributes later in this
chapter) but what I want to point out is the methods the property is mapped to are not those in
the declaration!

.property instance string Two()
{
 .custom instance void [System]
 System.ComponentModel.BrowsableAttribute::.ctor(bool) =
 (01 00 01 00 00)
 .get instance string PropertyDemo.TMyClass::get_Two()
 .set instance void PropertyDemo.TMyClass::set_Two(string)
} // end of property TMyClass::Two

Again the compiler does a few things behind the scenes. It doesn't change the method names,
but it generates another method, get_Two, that calls GetTwo:

.method public hidebysig specialname instance string
 get_Two() cil managed
{
 // Code size 9 (0x9)
 .maxstack 1
 .locals init ([0] string Result)
 IL_0000: ldarg.0
 IL_0001: call instance string
 PropertyDemo.TMyClass::GetTwo()
 IL_0006: stloc.0
 IL_0007: ldloc.0
 IL_0008: ret
} // end of method TMyClass::get_Two

Indexers or Array Properties

Since its first release, Delphi has always supported the idea of array properties that receive as
parameter a value passed among square brackets. And we've always enjoyed the possibility of
marking one of the array properties of a class as default, so that it can be referenced applying
the square brackets right to the object, omitting the property name.

The C# language has a very similar idea, called indexer, with a significant difference: you can
have multiple indexers (that is default array properties) for a single class, based on a different
types of index. To match this feature, Delphi for .NET adds support for overloading the default
array property. Notice that you cannot really have multiple array properties (if you try, only the
last default array property will be considered) but you can have multiple definitions of a single
property (as in this snippet from the PropertyDemo example):

type
 TMySecondClass = class
 private
 strList: TStringList;
 public
 constructor Create;
 function get_One(I: Integer): string; overload;
 function get_One(Id: string): string; overload;
 procedure set_One(I: Integer;
 const Value: string); overload;

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 50

 procedure set_One(Id: string;
 const Value: string); overload;
 public
 property One [I: Integer]: string
 read get_One write set_One; default;
 property One [Id: string]: string
 read get_One write set_One; default;
 end;

This means you can use both versions of the One default property simply by specifying different
types of parameters among square brackets:

 sc := TMySecondClass.Create;
 sc ['text'] := 'hello';
 writeln (sc [0]);

Applying Constructors to Instances

In past versions of Delphi, constructors could be used in two different scenarios: (i) you could use
them in the traditional object creation mode, by applying them to a class type, or (ii) you could
use them in initializer mode, by applying them to existing objects:

anObject := aClass.Create; // (i) object creation
anObject.Create; // (ii) object (re)initialization

In Delphi 8 for .NET you cannot apply a constructor to an instance any more. The reason is that
the underlying execution environment doesn't support this feature. The effect of this change is
quite positive, though. Applying a constructor to an instance is a classic error in Delphi, an error
for which the compiler might at most issue a warning, because there is a legitimate use of the
syntax. Now with that use being illegal, the compiler will issue an error, and will almost always be
correct! In fact, 99% of the times you apply a constructor to an instance you are typing the
wrong code (this percentage is true for myself at least, and I keep mistyping constructor calls
after so many years of Delphi coding).

Calling Inherited Constructors

Delphi 8 for .NET marks a clear departure from the traditional Delphi implementation of
constructors. Delphi used to be one of the few OOP programming languages that didn't require to
initialize base classes in the constructor of an inherited class, opening up the possibility for errors
and odd behaviors. Now Delphi 8 enforces this rule. In the constructor of an inherited class you
must call the base class constructor and you must call it before touching any field or calling any
method of the base class.

For example, the following trivial code doesn't compile any more:

 type
 TMyClass = class
 private
 fValue: Integer;
 public
 constructor Create;
 end;
constructor TMyClass.Create;
begin

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 51

 fValue := 10;
end;

Instead, it gives the error message: “'Self' is uninitialized. An inherited constructor must be
called”. In fact, the TMyClass class inherits from TObject, so it is bound to the same rule of any
other class. This is quite unfortunate, as the TObject.Create constructor is basically useless. To
compile the constructor you need to add a new line with the inherited constructor call, like:

constructor TMyClass.Create;
begin
 fValue := 10;
 inherited Create;
end;

Considering that there are restrictions on what you can do before initializing the base class, the
preferred way of coding the constructor above is certainly:

constructor TMyClass.Create;
begin
 inherited Create;
 fValue := 10;
end;

[TODO: cover more complex cases]

Free and Destroy in the Garbage Collected World

One of the features of the .NET platform (like the Java platform) that gets more enthusiastic
supporter and angry opponents is garbage collection. Here I don't want to get into this
discussion, but only address a specific issue related to the management of external resources.
Although the garbage collector will automatically reclaim unused memory, no one will magically
free external resources (like files, database connections, bitmaps and GDI resources...) unless
you write and execute specific code.

Now the problem is that with the garbage collector in action you cannot simply put this code in
the class destructor, as an object may be destroyed a long time after it is no longer or might
even not be called at all! This would keep the resources locked much longer than necessary.

To address this issue .NET has a specific patterns you must implement: any class needing
resource clean-up should implement the IDisposable interface. This interface has only one
method, Dispose. So you'll have to add this method in your classes, if needed. You must also call
the method at the proper time before all of the references to the object go out of scope. Only in
some specific cases, for example when the object is placed in a container, will a library class call
Dispose for you.

In Delphi for .NET, all objects implicitly implement IDisposable and calls to Dispose are redirected
to the Destroy destructor. That is, the destructor code doesn't compile to a real destructor (which
is very seldom needed) but to the Dispose method. The result is that most of your existing Delphi
code will still work adapting itself properly to the correct .NET behavior.

If you write a destructor Destroy and forget the override keyword you'll get an odd error
message saying “Unsupported language feature: 'destructor'”. Of course this feature is
supported but you must override the TObject destructor.

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 52

So if you write this code:

type
 TMyClass = class
 public
 destructor Destroy; override;

You'll end up with the following IL, indicating the the class implements System.IDisposable:

.class public auto ansi beforefieldinit TMyClass
 extends [mscorlib]System.Object
 implements [mscorlib]System.IDisposable

In turn the Destroy method becomes an implementation to Dispose:

.method public newslot virtual instance void
 Destroy() cil managed
{
 .override [mscorlib]System.IDisposable::Dispose

If you look with more care into the code of the destructor, you'll notice that it sets a Disposed_
boolean field. This is a hidden field added to the class by the compiler. This field is checked
upon entering the destructor to avoid re-executing it, thus blocking a double destroy
operation.

As in Delphi 1 to 7, you never call Destroy directly to dispose objects properly, but call Free
instead. Free invokes the (virtual) destructor. In Delphi for .NET the call to Free has been
redirected to a call to the Dispose method of the IDisposable interface:

procedure TObjectHelper.Free;
begin
 if (Self <> nil) and (Self is IDisposable) then
 begin
 if Assigned(VCLFreeNotify) then
 VCLFreeNotify(Self);
 (Self as IDisposable).Dispose;
 end;
end;

A curiosity: Thanks to class helpers you can also call Free on FCL objects, or other objects written
in C#.

Again, this means that to properly dispose external resources (and since you generally don't
know how an object is implemented, better do this anyway) you can keep using try-finally blocks
like:

var
 MyObj: TMyObj;
begin
 MyObj := TMyObj.Create;
 try
 // use MyObj
 finally
 MyObj.Free;
 end;

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 53

To sum things up, you keep writing destructors (unless all you have to free is memory) and you
keep calling Free on objects. Your Delphi code remains the same, but the behavior changes
considerably. You need to know this, but than keep your habits. The garbage collector will help
you remove unreferenced objects (but you should not rely on this because of the resource issue)
and won't really get into your way (with extra stuff like Dispose to remember). In other words,
keep writing your code as you are used to and stop reading discussions on the garbage collector
benefits and drawbacks...

Class References and MetaClasses
[TODO: add short intro about what is a class reference for programmers with limited Delphi
knowledge. Mention also what is a virtual constructor.]

Class references are a specific feature of the Delphi language, so it shouldn't surprise you that
the .NET framework doesn't have the same concept. As usual, Delphi 8 retains the syntax for
class references and most of their behavior stays the same as well (including the call of virtual
constructors on them and their support for virtual class methods). However behind the scenes,
the implementation changes considerably.

In Delphi 8 for .NET, for each class (let's call one TMyClass) the compiler creates both a class and
a metaclass (called by default something like @MetaTMyClass) inherited from the generic TClass
metaclass. The compiler also defines a constant static instance of the metaclass.

Delphi class references (or metacalsses) are not CLS compliant: they are not intended for
use by other .NET languages. The same holds for virtual constructors.

However the Delphi 8 compiler cannot impose the presence of a specific metaclass for classes not
compiled by Delphi and imported from assemblies written in other languages. In this case the
compiler creates an instance of a generic TClass metaclass, passing the CLR type to the
constructor. In this way Delphi 8 can simulate Delphi metaclass behaviors for any .NET class,
although the code is not as efficient as with the class-specific metaclasses generated by the
compiler.

By the way, notice that internally TClass uses an instance of the type System.RuntimeTypeHandle
rather than the more obvious (but less memory efficient) System.Type.

[TODO: add an example and inspect the IL code]

Interfaces are now “Pure”
At the time of its introduction in the early versions of Delphi, the interface type was considered by
most programmers strictly as a COM-related technique. This was also due to some
implementation decisions within Delphi's RTL. With the introduction of each new version of Delphi
the relationship between the concept of interface and COM has been slowly but increasingly
reduced. For example, recent versions of Delphi introduced the IInterface base interface (a
formal replacement of IUnknown) and helper classes and routines in general RTL units (instead of
the COM/ActiveX units).

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 54

For sure I'm a big fan of the use of interfaces as a sound OOP technology. My Mastering
Delphi 7 books shows some ways to benefit from interfaces, but nothing like my Design
Patterns papers (not publicly available, sorry) shows the power of this technique.

In Delphi 8 COM is basically gone, so it should come as no surprise that some relevant
implementation details of interfaces have changes as well. First of all, the definition of IInterface
is still available but quite different, as it now has an empty definition (in Borland.Delphi.System):

type
 IInterface = interface
 end;

This means that the reference counting for interfaces is gone, something that should come at no
surprise with a runtime that uses garbage collection, but also the the type checking is not based
on QueryInterface anymore but on specific compiler/runtime features. The side-effect of this
change is that you don't need to decorate interfaces with GUIDs any more for the type checking
to work properly as required in previous versions of Delphi.

Correspondingly the TInterfacedObject class has an empty implementation:

type
 TInterfacedObject = TObject;

These changes imply that now interfaces are 100% a language feature, with no connection
whatsoever to COM or anything else. The .NET runtime fully supports interfaces (and the runtime
and the FCL uses them quite extensively) so Delphi for .NET embraces this appraoch.

Does it mean that interfaces work better in Delphi 8 than they used to do in Delphi 7? For sure,
having garbage collection on interfaces object is very handy, as it is far form trivial to free objects
in Delphi 7 when you access them exclusively via interfaces.

However, there are also some interesting features of interfaces in Delphi 7 that didn't make it
over to .NET. In particular, dynamic aggregation of interfaces (that is the use of the implements
keyword for interfaces) is not supported in Delphi for .NET. This is quite bad, as dynamic
aggregation allows you to share a common implementation of the interface methods between
separate classes implementing the same interface.

[TODO: cover interface methods resolution]

As a sample of the use of interfaces in Delphi 8 you can look at the InterfaceTest demo. Its
secondary unit has an interface with a few methods and a property. When declaring the property
I found out that for .NET compatibility you should follow very precise rules, even more than on
regular properties (it seems, but I'm not 100% sure). This is how Delphi 8 likes it:

type
 ISimple = interface (IInterface)
 procedure ShowMessage;
 function Compute (a, b: Integer): Integer;
 function get_Value: Integer;
 procedure set_Value (Value: Integer);
 property Value: Integer read get_Value write set_Value;
 end;

Notice the lowercase names for the get and set methods and the underscore before the property
name. If you don't follow this convention you'll get hints like:

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 55

[Hint] Property accessor GetValue should be get_Value
[Hint] Case of property accessor method ISimple.Get_Value
should be ISimple.get_Value

These hints, which can be suppressed, help you write CLS-compatible code. If you fail do do so
other .NET languages won't be able to use the property. Some of them (like VB and C#) will still
allow you to use the property or call the getter and setter accessor methods directly, but some .
NET languages might not allow any access at all.

By looking at the interfaces used by .NET, however, it seems that they avoid the problem
altogether by not using properties inside interfaces, but only custom set and get methods
written in many inconsistent ways...

Notice that the behavior of the Delphi compiler with properties inside interfaces (you'll get the a
compiler hint) is quite different from properties inside classes. In this case, as discussed earlier in
the section “Properties”, the compiler adds to your code the CLS-compliant methods generating
code for them. This ensures CLS compatibility, at the cost of extra code (and generally also
slower code). With interfaces the automatic generation would have made no sense, as you've
had to implement multiple versions of the same method.

As an experiment I've added a GUID (or to be more precise an IID, an interface ID) to the
interface as follows:

type
 ISimple = interface (IInterface)
 ['{6F1B5589-3987-4665-9C4F-630287760BE9}']

This is apparently ignored by the compiler. I was expecting to see the class decorated with a
Guid attribute, but if you want to obtain one you'll need to write code like in C#:

type
 [Guid('6F1B5589-3987-4665-9C4F-630287760BE9')]
 ISimple = interface (IInterface)

This effectively adds the attribute in the code, which is what you might have to do for COM
interoperability in .NET (notice, in fact, you'll need to use the System.Runtime.InteropServices
namespace for the Guid attribute to work).

Operators Gain New Ground
Another brand new addition to the Delphi language is the concept of operators overloading, that
is the ability to define you own implementation for doing standard operations (sum, multiply,
compare...) on your data types. For example, you can implement an add operator (a special Add
method) and then use the + sign to call it.

To define an operator you use the directive class operator (with a directive Borland managed to
have no impact on existing code, while adding a new reserved word could have caused troubles).
The term class here relates to class methods, as operators like class methods have no self
parameter, no current object. After the directive you write the operator’s name, like Add:

type
 TPointRecord = record
 public

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 56

 class operator Add (a, b: TPointRecord): TPointRecord;
The operator Add is than called with the + symbol, as you’d expect. So what are the available
operators? Basically the entire set of operators of the language, as you cannot define brand new
language operators:

Cast Operators: Implicit, Explicit

Unary Operators: Positive, Negative, Inc, Dec, LogicalNot, BitwiseNot, Trunc, Round

Comparison Operators: Equal, NotEqual, GreaterThan, GraterThanOrEqual,
LessThan, LessThenOrEqual

Binary Operators: Add, Subtract, Multiply, Divide, IntDivide, Modulus, ShiftLeft,
ShiftRight, LogicalAnd, LogicalOr, LogicalXor, BitwiseAnd, BitwiseOr, BitwiseXor

In the code calling the operator, you do not use these names but use the corresponding symbol.
This allows fields or methods within your code to have a name that would otherwise conflict. For
example you can still use a class with an Add method and even add an Add operator to it.

When you define these operators you spell out the parameters, and the operator will be applied
only if the parameters match exactly. To add two values of different types you’ll probably have to
specify two Add operations, as each operand could be the first or second entry of the expression.
In fact, the definition of operators provides no automatic commutativity. Moreover, you have to
indicate the type very precisely, as automatic type conversions don’t apply. Many times this
implies overloading the overloaded operator providing multiple versions with different types of
parameters.

There are two further special operators you can define, Implicit and Explicit. The first is used to
define an implicit type cast (or silent conversions), which should be perfect and not lossy. The
second, Explicit, can be invoked only with an explicit type cast from the record structure to a
given type. Together these two operators define the casts that are allowed to and from the given
data type. Notice that both the Implicit and the Explicit operators can be overloaded based on
the function return type, which is generally not possible for overloaded methods. In case of a
type cast, in fact, the compiler knows the expected resulting type, and can figure out which is the
typecast operation to apply.

As an example, the OperatorsOver demo includes both a record with a few operators and a class
with similar ones:

type
 TPointRecord = record
 private
 x, y: Integer;
 public
 procedure SetValue (x1, y1: Integer);
 class operator Add (a, b: TPointRecord): TPointRecord;
 class operator Explicit (a: TPointRecord): string;
 class operator Implicit (x1: Integer): TPointRecord;
 end;
 type
 TPointClass = class
 private
 x, y: Integer;
 public
 procedure SetValue (x1, y1: Integer);

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 57

 class operator Add (a, b: TPointClass): TPointClass;
 class operator Explicit (a: TPointClass): string;
 end;

Here is the trivial implementation of the methods of the record:

class operator TPointRecord.Add(a, b:
 TPointRecord): TPointRecord;
begin
 Result.x := a.x + b.x;
 Result.y := a.y + b.y;
end;
class operator TPointRecord.Explicit(a: TPointRecord): string;
begin
 Result := Format('(%d:%d)', [a.x, a.y]);
end;
class operator TPointRecord.Implicit(x1: Integer):
 TPointRecord;
begin
 Result.x := x1;
 Result.y := 0;
end;

Using such a record is quite straightforward, as you can write code like this (remember that
record variables don't need an explicit allocation):

procedure TForm1.Button1Click(Sender: TObject);
var
 a, b, c: TPointRecord;
begin
 a.SetValue(10, 10);
 b := 30;
 c := a + b;
 ShowMessage (string(c));
end;

The second assignment (b) is done using the implicit operators, in fact there is no cast, while the
ShowMessage call uses the cast notation to activate an explicit type conversion. Consider also
that the operator Add doesn't modify its parameters, rather it returns a brand new value. This is
a general rule of operators overloading in Delphi for .NET, which applies also to classes. In this
second case, however, you'll have to create – allocate – a new object:

class operator TPointClass.Add(a, b: TPointClass): TPointClass;
begin
 Result := TPointClass.Create;
 Result.x := a.x + b.x;
 Result.y := a.y + b.y;
end;

Danny Thorpe (in a presentation I attended) suggested that “while it is valid syntax to define
operators on class types, it seems significant that there is not one class in the entire .NET
framework that implements operators. Stick with records until we find out why.”

Delphi's RTL has been rewritten to take advantage of records with methods and operators. You'll
see examples of operators overloading in the Currency type and DateTime type (in

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 58

Borland.Delphi.System, that is the good old System.pas) and in the complex numbers
implementation you can find in the Borland.Vcl.Complex unit.

Operators Resolution Rules

The rules related to the resolution of calls involving operators are different than the traditional
rules involving methods, as particularly with automatic type conversion there are chances for a
single expression to end up calling different versions of an overloaded operator and to cause
ambiguous calls.

[TODO: More details might follow]

Attributes, or RTTI to the Extreme
The concept of attributes represent probably the single most relevant innovation of the .NET
runtime and the C# language (being also one of the few ideas not coming from Java).

Attributes in .NET represent RTTI to the extreme. In fact, like in Delphi you can declare a
property as published to be able to access it at runtime, using RTTI techniques, in .NET you can
decorate properties, methods, classes and any other entity with attributes you can later query for
at runtime. The huge differences between the two approaches is that while a concept like
published is rooted into the system, attributes are totally open: you can define the attributes you
like, even with parameters, and decorate symbols even with multiple attributes.

Technically in Delphi for .NET (as in other .NET languages) attributes are listed within square
brackets, like this (where the attribute is applied to a class):

type
 [anAttribute]
 TFoo = class
 ...
 end;

In case an attribute has parameters the code becomes like (in this case the attribute is applied to
a method):

type
 TFoo = class
 [anotherAttribute (22)]
 procedure Test;
 end;

Declaring Custom Attributes

As I mentioned, you can define a new type of attribute, that is a new attributes class. This has to
be a class inheriting from TCustomAttribute (which in turn is an alias of System.Attribute). The
following is a simple code snippet:

type
 TMyCustomAttribute = class(TCustomAttribute)
 private
 FAttrValue : Integer;
 public

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 59

 constructor Create(AttrValue: Integer);
 property CustomValue : Integer
 read FAttrValue write FAttrValue;
 end;
 constructor TMyCustomAttribute.Create(AttrValue: Integer);
 begin
 inherited Create;
 CustomValue := AttrValue;
 end;

This is how you can use this attribute to mark a class and a method. Notice that you can use the
short form (the class name without the final "Attribute") or the complete form:

type
 [TMyCustom(17)]
 TFoo = class
 public
 [TMyCustomAttribute(22)]
 Data : Integer;
 end;

The instance data and the class definition are now marked with the attribute:

.class public auto ansi beforefieldinit TFoo
 extends [mscorlib]System.Object
{
 .custom instance void
 NetAttributes.TMyCustomAttribute::.ctor(int32) = (...)
 ...
 .field public int32 Data
 .custom instance void
 NetAttributes.TMyCustomAttribute::.ctor(int32) = (...)

Unit attributes are achieved by placing the attribute immediately before the begin..end block of
the unit or by using the [unit:] attribute scope modifier. Another “global” scope modifier is
[assembly:], which is placed anywhere in the code (but usually in the project source file) and
applies to the compiled assembly.

Inspecting Attributes with Reflection

By itself adding attributes to declarations, as we've done earlier, is completely useless. It
becomes interesting as soon as there is some other code you have written or part of the .NET
libraries that looks after those specific attributes and behaves accordingly.

This means that other code typically acts only on classes or methods marked with a given
attribute, eventually considering the attribute parameters. In the NetAttributes example this is
accomplished by two routines, ShowCustomAttributes and ShowAttribs, shown below. The first
routine receives as parameter a type, outputs the type name and then extracts from the type the
list of attributes of type TMyCustomAttribute (or a compatible derived class). This list is passed to
the second routine, which displays the attribute name (of the first attribute of the list) and grabs
the value of its parameter. As we've asked for TMyCustomAttribute attributes the cast to this
type is indeed correct. Back to the ShowCustomAttributes routine, it repeats the process of
displaying the type name, the member type, and the eventual attribute for each of the type
members, methods and data.

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 60

procedure ShowCustomAttributes (aType: System.Type);
var
 members : array of System.Reflection.MemberInfo;
 I: Integer;
 mtypes: System.Reflection.MemberTypes;
begin
 write (aType.Name);
 ShowAttribs (aType.GetCustomAttributes
 (TMyCustomAttribute.ClassInfo, True));
 writeln;
 members := aType.GetMembers;
 for I := 0 to High(members) do
 begin
 mtypes := members[i].MemberType;
 write (aType.Name + ':' + members[i].Name +
 ' (' + TObject(mtypes).ToString + ')');
 ShowAttribs (members[i].GetCustomAttributes
 (TMyCustomAttribute.ClassInfo, True));
 writeln; // new line
 end;
end;
procedure ShowAttribs (attribs: array of System.Object);
begin
 // show only the first one...
 if Length (attribs) > 0 then
 begin
 write (' ---> ' + attribs[0].ToString);
 write ('(' + IntToStr ((attribs[0] as TMyCustomAttribute).
 CustomValue) + ')');
 end;
end;

The effect of this code is that a call in the main module over an object of the TFoo type , like:

ShowCustomAttributes (Foo.GetType);
(or over the TFoo type itself) produces an output like:

TFoo ---> CustomAttribute.TMyCustomAttribute(17)
TFoo:Data (Field) ---> CustomAttribute.TMyCustomAttribute(22)
TFoo:GetHashCode (Method)
TFoo:Equals (Method)
TFoo:ToString (Method)
TFoo:Free (Method)
(more output omitted)

Relevant Predefined Attributes

[TODO: List of interesting predefined attributes in .NET. Here or in a later chapter.]

Events for Everybody
In its first incarnation, Delphi introduced the idea of events as most development tool use them
nowadays. An event in Delphi provides a way to hook an external method to an object, thus

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 61

modifying the object’s behavior through delegation (instead of customizing its class through
inheritance). For example, the code a button executes when it is clicked is not written in the
button class, but the button delegates to a method of another object, usually the form hosting
the button.

Technically, in Delphi an event is a property with a method pointer type, that is a reference to a
method of an object. Java took a different approach, but .NET uses an architecture similar to the
Delphi one, with only a relevant extension: an event can have multiple handlers attached to it.
The term generally used to indicate this behavior is multicast events.

Delphi for .NET actually supports both traditional unicast and the new multicast events,
depending on the components you are working with. The classic event semantics is still
supported through := assignments; the new multicast semantics uses the Include() and Exclude()
standard procedures, overloaded, to operate on events (these functions were used in the past to
operate on sets). As a comparison, C# uses the += and -= operators of the C language.

Include (Button1.Click, Button1Click)
In general you’ll stick to the traditional approach when working with VCL.NET, while the multicast
technique is necessary when integrating with .NET native framework. To better support
interoperability, though, the standard Delphi read/write events support now also the add/remove
semantic of .NET for compatibility with CLR (for example to let C# code use traditional Delphi
objects), although the actual behavior will be a single assignment.

[TODO: Sample code missing, defer it to WinForms chapter?]

[TODO: cover the fact that the order in which multicast events are called is not guaranteed, and
should not be assumed]

Back to Windows
[TODO: this section still missing]

DllInvoke

Example

Speed considerations

Inverse P/Invoke (Unmanaged Exports)

Introducing unmanaged exports (other related topics to come later), as this is a language
extension

“functions in a managed Delphi for .NET code assembly can be called directly by unmanaged
Win32 code with no COM interop or .NET awareness.”

[add Demo code I have]

Three simple steps:

library

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 62

{$UNSAFECODE ON}

exports function_name;

Notes on the dccil Compiler
[TODO: section still missing]

Documentation: Compiler switch -DOC to produce XML documentation

Conditional defines of dccil compiler

{$IFDEF CLR}
{$IFDEF CIL}
{$IFDEF MANAGEDCODE}

Update 1
The Update 1 for Delphi 8 for .NET released in February 2004 provides among (few) other things
fixes to the compiler (see http://bdn.borland.com/article/0,1410,31971,00.html).

The compiler fixes relate to the Variant to AnsiString conversion, help dealing with a few code
browsing errors, cause an error when compiling a package twice, and (in particular) fix a code
generation bug that will consider signed some unsigned values when they are promoted to Int64,
thus altering their content. As the readme file suggests:

A large positive 32 bit value such as 2952790015 ($AFFFFFFF) would turn
into -1342177281 when assigned to an Int64 variable or parameter.

This Update 1 change causes a few troubles when rebuilding the VCL, as the library code must be
updated for some of the compiler changes. You have two solutions: (i) avoid rebuilding it, or (ii)
download the updated VCL source from Code Central (id=21403). The BDN article
http://bdn.borland.com/article/0,1410,31968,00.html explains the details.

Delphi 8 for .NET Update 2
[TODO: Section still missing, don't know if it is really needed]

Summary
At end of this chapter devoted to the Delphi language in .NET there are two relevant ideas I
discussed at length and want to underline as a conclusion of this chapter.

Delphi Language Extended as Never Before

First, Delphi 8 for .NET is a relevant milestone for the Delphi language, with fixes and
improvements on long standing issues (private that really works, inherited constructors that
initialize base classes, class data) and a number of relevant new features (records with methods,
operators overloading, attributes). Waiting for at least some of these features in a future Win32

Essential Delphi 8 for .NET – Copyright 2004, Marco Cantù (www.marcocantu.com/d8ebook) – Page 63

version, we Delphi programmers will take some time to adjust our coding style to a heavily
updated and revived language (based on a rock solid language foundation).

Delphi Language Above and Beyond the CLR

The other relevant thought is that the Delphi language was indeed extended to match features in
the .NET CLR and for CLS-compliance, but it is nice to notice that Delphi has CLS-compliant
features that other .NET languages lack (like class helpers and Inverse P/Invoke) and also a
number of non CLS-compliant features the language always has (like class references and virtual
constructors, named constructors, virtual calls from class methods, a safe use of unsafe types,
short strings, and many more).

What's Next in the Book

The next chapter covers Delphi 8 runtime library, which is a mixing of the core classes of the
Microsoft's .NET FCL (Framework Class Library) and of the traditional routines and classes of the
classic Delphi RTL from previous versions. As we'll see the mix-in in mostly achieved using class
helpers, but Borland has used other language tricks to make your existing Delphi code easily
portable to the .NET platform.

